
z/OS

Security Server
LDAP Client Programming

SC24-5924-02

IBM

z/OS

Security Server
LDAP Client Programming

SC24-5924-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 185.

Acknowledgements

Some of the material contained in this document is a derivative of LDAP documentation provided with the University of Michigan
LDAP reference implementation (Version 3.3). Copyright ©1992-1996, Regents of the University of Michigan, All Rights Reserved.

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed by NEC Systems Laboratory.

Third Edition, September 2002

This is a major revision of SC24-5924-01.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), to Version 1 Release 4 of z/OS.e (5655-G52), and to
all subsequent releases and modifications until otherwise indicated in new editions.

IBM® welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Tables . vii

About this document . ix
Who should use this document . ix
How this document is organized . ix
Conventions used in this document . ix
Where to find more information. ix

Softcopy publications . x
z/OS online library . x
Accessing licensed documents on the Web . x
Using LookAt to look up message explanations . x

Summary of changes . xiii

Chapter 1. LDAP programming . 1
How LDAP is defined . 2
Data model . 2
LDAP names . 3
Function overview. 3
Using the socksified client . 5
Compiling, linking, and running a program . 7

Using TSO and batch jobs . 8
Using the API . 9

Basic structure . 9
Performing an operation . 10

Example: adding an entry . 10
Example: modifying an entry . 11
Example: deleting an entire entry. 11
Example: changing the RDN of an entry and relocating the entry 12
Example: comparing an attribute value with its value in an entry in the directory 12
Example: reading a directory entry’s contents . 12
Example: listing all objectClass attribute values for all entries directly below a given entry 13
Example: reading all objectClass attribute values for all entries below a given entry 13

Getting results . 13
Error processing . 14

Using ldap_get_errno and ldap_parse_result . 14
Using ldap_err2string and ldap_get_option . 15

Tracing . 15
Thread safety . 17
Client-side search results caching . 17
Synchronous versus asynchronous operation . 17
Calling the LDAP APIs from other languages . 17
LDAP client for Java . 17

Chapter 2. LDAP routines . 19
LDAP controls. 24
Session controls . 24
Supported client controls . 25
Using RACF® data . 27
ldap_abandon. 28
ldap_add . 30
ldap_bind . 32
ldap_compare . 37

© Copyright IBM Corp. 1999, 2002 iii

||

ldap_delete. 39
ldap_enetwork_domain . 41
ldap_error . 42
ldap_extended_operation . 46
ldap_first_attribute . 48
ldap_first_entry/reference . 50
ldap_get_dn . 53
ldap_get_values . 54
ldap_init . 57
ldap_memcache . 70
ldap_memfree. 73
ldap_message . 74
ldap_modify . 76
ldap_parse_result . 79
ldap_rename . 82
ldap_result . 85
ldap_search . 87
ldap_server. 92
ldap_ssl . 107
ldap_url. 112

Chapter 3. LDAP operation utilities . 115
Running the LDAP operation utilities in the z/OS shell 115
Running the LDAP operation utilities in TSO . 115
Using the command line utilities. 116
SSL/TLS information for LDAP utilities . 116

Using RACF key rings . 117
CRAM-MD5 authentication to an IBM Directory Server 117

ldapdelete utility . 118
ldapmodify and ldapadd utilities . 121
ldapmodrdn utility . 131
ldapsearch utility . 135

Appendix A. LDAP header files . 141
lber.h . 141
ldap.h . 142
ldapssl.h . 154

Appendix B. Sample Makefile . 159

Appendix C. Example programs . 161
The ldapdelete.c example program . 161
The ldapsearch.c example program . 169

Appendix D. Accessibility . 183
Using assistive technologies . 183
Keyboard navigation of the user interface . 183

Notices . 185
Programming interface information. 186
Trademarks . 186

Bibliography . 187

Glossary . 189

iv z/OS V1R4.0 Security Server LDAP Client Programming

Index . 193

Contents v

vi z/OS V1R4.0 Security Server LDAP Client Programming

Tables

1. LDAP API functions . 4
2. Debug levels . 16
3. LDAP error codes and descriptions . 43
4. The optionValue parameter specifications . 58
5. ldapdelete options . 118
6. ldapmodify and ldapadd options . 121
7. ldapmodrdn options . 131
8. ldapsearch options. 135

© Copyright IBM Corp. 1999, 2002 vii

viii z/OS V1R4.0 Security Server LDAP Client Programming

About this document

This document supports z/OS (5694-A01) and z/OS.e (5665-G52) and describes the Lightweight Directory
Access Protocol (LDAP) client application development for z/OS Security Server.

Who should use this document
This document is intended for application programmers. Application programmers should be experienced
and have previous knowledge of directory services.

How this document is organized
This document is organized in the following manner:

v Chapter 1, “LDAP programming” on page 1 describes how to use the LDAP client application
programming interface.

v Chapter 2, “LDAP routines” on page 19 describes each LDAP client routine.

v Chapter 3, “LDAP operation utilities” on page 115 describes the LDAP operation utilities and how to run
them.

v Appendix A, “LDAP header files” on page 141 shows each LDAP header file.

v Appendix B, “Sample Makefile” on page 159 shows a sample Makefile.

v Appendix C, “Example programs” on page 161 shows examples of how to use the LDAP programming
interface.

Conventions used in this document
This document uses the following typographic conventions:

Bold Bold words or characters represent API names, attributes, status codes, environment variables,
parameter values, and system elements that you must enter into the system literally, such as
commands, options, or path names.

Italic Italic words or characters represent values for variables that you must supply.

Example Font
Examples and information displayed by the system appear in constant width type style.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you may repeat the preceding item one or more times.

\ A backslash is used as a continuation character when entering commands from the shell that
exceed one line (255 characters). If the command exceeds one line, use the backslash character \
as the last nonblank character on the line to be continued, and continue the command on the next
line.

Where to find more information
Where necessary, this document references information in other documents. For complete titles and order
numbers of the documents for all products that are part of z/OS, refer to z/OS: Information Roadmap,
SA22-7500.

© Copyright IBM Corp. 1999, 2002 ix

For a list of titles and order numbers of the documents that are useful for z/OS LDAP, see “Bibliography”
on page 187.

Softcopy publications
The z/OS Security Server library is available on a CD-ROM, z/OS: Collection, SK3T-4269. The CD-ROM
online library collection is a set of unlicensed documents for z/OS and related products that includes the
IBM LIbrary Reader. This is a program that enables you to view the BookManager files. This CD-ROM
also contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe
Acrobat reader.

z/OS online library
The softcopy z/OS publications are also available for web browsing and for viewing or printing PDFs using
the following URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv

You can also provide comments about this document and any other z/OS documentation by visiting that
URL. Your feedback is important in helping to provide the most accurate and high-quality information.

Accessing licensed documents on the Web
z/OS licensed documentation is available on the Internet in PDF format at the IBM Resource Link Web site
at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to these documents
requires an IBM Resource Link user ID and password, and a key code. With your z/OS order you received
a Memo to Licensees, (GI10-0671), that includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered for access to them
and received an e-mail confirmation informing you that your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or IBM Resource Link to
print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most messages you encounter, as
well as for some system abends and codes. Using LookAt to find information is faster than a conventional
search because in most cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

Preface

x z/OS V1R4.0 Security Server LDAP Client Programming

|
|

|

|
|
|

|

|

|

|

|

|
|

|

|
|

|
|
|

|

|

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for example, TSO/E prompt,
ISPF, z/OS UNIX System Services running OMVS). You can also download code from the z/OS: Collection
and the LookAt Web site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host system. You can
obtain the LookAt code for TSO/E from a disk on your z/OS: Collection or from the News section on the
LookAt Web site.

Some messages have information in more than one document. For those messages, LookAt displays a list
of documents in which the message appears.

Preface

About this document xi

|
|
|
|

|
|
|

|
|

xii z/OS V1R4.0 Security Server LDAP Client Programming

Summary of changes

Summary of changes
for SC24-5924-02
z/OS Version 1 Release 4

This book contains information previously presented in z/OS Security Server LDAP Client Programming,
SC24-5924-01, which supports z/OS Version 1 Release 2 and z/OS Version 1 Release 3.

New Information

v The ldapmodrdn utility has been updated with full support for Modify DN operations as defined in RFC
2251 - Lightweight Directory Access Protocol (v3), including rename of non-leaf nodes and subtree
relocation. In addition, support has been added for new controls to specify a time limit for the Modify DN
operation and to request DN realignment as part of the operation.

v The LDAP operation utilities have all been updated to support CRAM-MD5 (Challenge Response
Authentication Mechanism - RFC 2104) and DIGEST-MD5 (RFC 2931) authentication bind mechanisms.
In order to support these new bind mechanisms, a new client control has been added to specify the
authentication identity. An additional client control has been added to specify the realm name to be used
during DIGEST-MD5 authentication.

v The LDAP SASL bind APIs are updated to support CRAM-MD5 and DIGEST-MD5 mechanism.

v Updated the process for specifying debug levels for LDAP operation utilities.

v LDAP operation utilities updated to support specifying a System SSL key ring stash file.

v The ldap_set_option and ldap_set_option_np APIs are updated for a new option to specify the debug
values as a key word string.

v The ldap_ssl_client_init API supports specifying a System SSL key ring stash file.

v New cipher values can be specified for the LDAP_OPT_SSL_CIPHER option on the ldap_set_option
and ldap_set_option_np APIs.

v The LDAP client APIs support both Secure Sockets Layer (SSL) Version 3 and Transport Layer Security
(TLS) Version 1 for secure protected sessions.

v An appendix with z/OS product accessibility information has been added.

v Information is added to indicate this document supports z/OS.e.

Changed Information

v Updated the ldap.h header file.

v Updated the ldapssl.h header file.

v The default version of the LDAP operation utilities has been updated from LDAP Version 2 to LDAP
Version 3.

Removed Information

v The IBM JNDI provider (ibmjndi.jar) is no longer shipped and supported. Migration to the Sun JNDI
provider is required.

This document includes terminology, maintenance, and editorial changes. Technical changes or additions
to the text and illustrations are indicated by a vertical line to the left of the change.

You may notice changes in the style and structure of some content in this book—for example, headings
that use uppercase for the first letter of initial words only, and procedures that have a different look and
format. The changes are ongoing improvements to the consistency and retrievability of information in our
books.

© Copyright IBM Corp. 1999, 2002 xiii

Summary of changes
for SC24-5924-01
z/OS Version 1 Release 2

This book contains information previously presented in z/OS Security Server LDAP Client Programming,
SC24-5924-00, which supports z/OS Version 1 Release 1.

The following summarizes the changes to that information:

New information

v Added the following new APIs:
– ldap_enetwork_domain_get
– ldap_enetwork_domain_set
– ldap_extended_operation
– ldap_extended_operation_s
– ldap_memcache_destroy
– ldap_memcache_flush
– ldap_memcache_get
– ldap_memcache_init
– ldap_memcache_set
– ldap_memcache_update
– ldap_parse_extended_result
– ldap_server_conf_save
– ldap_server_free_list
– ldap_server_locate

v Added information on global cache support.

v Added information on the ibm-serverHandledSearchRequest client control.

v Added information for Kerberos Version 5 bind.

Changed Information

v Updated the ldap.h header file.

v Updated the process for specifying debug levels.

Moved Information

v The ldap_unbind and ldap_unbind_s APIs are now located within the ldap_init group of APIs.

v The list of deprecated LDAP APIs are now located at the beginning of the LDAP routines chapter.

This document includes terminology, maintenance, and editorial changes, including changes to improve
consistency and retrievability.

xiv z/OS V1R4.0 Security Server LDAP Client Programming

Chapter 1. LDAP programming

The Lightweight Directory Access Protocol (LDAP) was defined in response to many complaints about the
complexity of interacting with an X.500 Directory Service using the full Directory Access Protocol (DAP). A
number of programmers at the University of Michigan proposed and implemented a lightweight version of
a directory access protocol. This work has grown into what is termed the LDAP protocol.

The LDAP support in z/OS is for client access to Directory Services that accept the LDAP protocol. The
LDAP client allows programs running on z/OS UNIX System Services to store and extract information into
and from a Directory Service. The LDAP server, a component of the z/OS Security Server, can be used to
store and extract information on z/OS using the LDAP protocol. See z/OS: Security Server LDAP Server
Administration and Use for more information.

Regarding security, five authentication methods are supported: simple authentication, certificate
authentication, Kerberos credentials authentication, CRAM-MD5 authentication, and DIGEST-MD5
authentication. With simple authentication, a user ID and password are sent (in the clear) from the client to
the server in order to establish who is contacting the LDAP server for information.

Secure Socket Layer (SSL) or Transport Layer Security (TLS) can be used to secure the socket
connection between the client and the server by encrypting the data transferred over the connection. TLS
is based upon SSL V3. Through a protocol handshake between the client and server, the choice of TLS or
SSL is decided with TLS being the preferred protocol. In the case of a simple bind, the encryption protects
the password.

With certificate authentication, the identity from the client certificate sent to the LDAP server on an
SSL/TLS socket connection is used to establish who is contacting the LDAP server for information.
Certificate authentication is also referred to as “SASL external bind” and is provided by the
ldap_sasl_bind API.

With Kerberos credentials authentication, a client application and an LDAP server accepting Kerberos
authentication mutually authenticate each other using a Key Distribution Center (KDC). The identity is
determined by algorithms on the server. Kerberos authentication is also referred to as “SASL GSS API
bind” and is provided by the ldap_sasl_bind API.

With CRAM-MD5 and DIGEST-MD5 authentication, authentication is accomplished in a series of
challenges and responses between the client application and server. The response from the client
application to the server has a hashed password that is calculated by using an algorithm that is known by
both the client application and server. The server checks to make certain that the authentication is correct
by calculating its own password hash and comparing it to the client calculated password hash.
CRAM-MD5 and DIGEST-MD5 authentication is provided by the ldap_sasl_bind API.

This chapter focuses on the following topics:
v Defining the LDAP protocol
v The LDAP Data model, including the format of distinguished names in LDAP
v An overview of the functions supported by the LDAP client API on z/OS
v Details on compiling and link-editing a program that uses the LDAP client API
v Information on how to use the LDAP client APIs
v An example program which shows how the LDAP client API could be used as a Directory Service
v The LDAP Version 3 Client for Java

© Copyright IBM Corp. 1999, 2002 1

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

How LDAP is defined
The LDAP protocol is defined by a number of Internet Engineering Task Force (IETF) request for
comments (RFCs). IETF RFC 2251 Lightweight Directory Access Protocol (v3) defines the LDAP Version 3
specification. LDAP Version 3 is what is implemented by the LDAP client interfaces for z/OS. Version 3 of
this protocol is extended by the following RFCs:

RFC 2251 - Lightweight Directory Access Protocol (v3)

RFC 2253 - Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished
Names

RFC 2255 - The LDAP URL Format

RFC 2829 - Authentication Methods for LDAP

RFC 2830 - Lightweight Directory Access Protocol (v3): Extension for Transport Layer Security

RFC 2831 - Using Digest Authentication as a SASL Mechanism

RFC 2849 - The LDAP Data Interchange Format (LDIF) - Technical Specification

The LDAP protocol is defined using ASN.1 notation. The wire protocol is defined as the Basic Encoding
Rules (BER) encodings of the ASN.1-defined structures. Furthermore, these BER encoded messages are
defined to be carried over a TCP/IP socket connection to a server that accepts the LDAP protocol.

IETF RFC 1823 The LDAP Application Programming Interface defines a programming interface for using
the LDAP protocol to communicate with a Directory Service that accepts the LDAP protocol. The
programming interface available on z/OS is very similar to the interface defined by RFC 1823.

IETF RFC 2251 Lightweight Directory Access Protocol (v3) defines the so-called LDAP Version 3
specification. LDAP Version 3 is what is implemented by the LDAP client interfaces for z/OS.

Other RFCs of interest include:

v RFC 1738 - Uniform Resource Locators (URL)

v RFC 1777 - Lightweight Directory Access Protocol

v RFC 1778 - The String Representation of Standard Attribute Syntaxes

v RFC 1779 - A String Representation of Distinguished Names

v RFC 1959 - An LDAP URL Format

v RFC 1960 - A String Representation of LDAP Search Filters

v RFC 2052 - A DNS RR for Specifying the Location of Services (DNS SRV)

v RFC 2195 - IMAP/POP AUTHorize Extension for Simple Challenge/Response

v RFC 2222 - Simple Authentication and Security Layer (SASL)

Data model
The LDAP data model is closely aligned with the X.500 data model. In this model, a Directory Service
provides a hierarchically organized set of entries. Each of these entries is represented by an object class
(or set of object classes). The object class of the entry determines the set of attributes which are required
to be present in the entry as well as the set of attributes that can optionally appear in the entry. An
attribute is represented by an attribute type and one or more attribute values. In addition to the attribute
type and values, each attribute has an associated syntax which describes the type of the attribute values.
Examples of attribute syntaxes include Directory String and Octet String .

To summarize, the directory is made up of entries. Each entry contains a set of attributes. These attributes
can be single or multi-valued (have one or more values associated with them). The object class of an
entry determines the set of attributes that must and the set of attributes that may exist in the entry. Refer
to z/OS: DCE Application Development Guide: Directory Services for more about the X.500 directory
information model.

2 z/OS V1R4.0 Security Server LDAP Client Programming

|

|

|

|

|
|
|

|

|

|

http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2255.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1777.txt
http://www.ietf.org/rfc/rfc1778.txt
http://www.ietf.org/rfc/rfc1779.txt
http://www.ietf.org/rfc/rfc1959.txt
http://www.ietf.org/rfc/rfc1960.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt

In XDS/XOM, a complex set of arrays of structures is used to represent a directory entry. In LDAP, this is
somewhat simplified. With the LDAP API, a set of C language utility routines is used to extract attribute
type and value information from directory entry information returned from an LDAP search operation.
Unlike XDS/XOM, attribute values are provided to the calling program in either null-terminated character
string form or in a simple structure that specifies a pointer and a length value. Furthermore, attribute types
are provided to the program as null-terminated character strings instead of object identifiers.

LDAP names
The LDAP protocol and APIs use “typed” names to identify directory entries. In contrast, DCE CDS and
the Domain Name Service (DNS) use “untyped” names to identify entries. Each directory entry is
identifiable by its fully distinguished name. The distinguished name (DN) is constructed by concatenating
the relative distinguished names (RDNs) of each entry in the directory hierarchy leading from the root of
the namespace to the entry itself. This is identical to the X.500 naming model. With LDAP, however, a
distinguished name is specified using a null-terminated character string instead of a complex set of nested
arrays of XOM structures. Note that an RDN can consist of multiple attribute type/value pairs.

Examples of LDAP RDNs include:
c=US
o=Acme International
ou=Marketing+l=Virginia
cn=Jane Doe

The same set of RDNs specified in the string format of X.500 names in DCE would appear as:
"c=US", "o=Acme International", "ou=Marketing;l=Virginia", and "cn=Jane Doe"

If each of these RDNs represented directory entries that appeared below the entry before it, the DN for the
lowest entry in the directory (using the DCE X.500 string form) would be:
/c=US/o="Acme International"/ou=Marketing;l=Virginia/cn="Jane Doe"

The LDAP format for this DN is a bit different:
cn=Jane Doe, ou=Marketing+l=Virginia, o=Acme International, c=US

An LDAP DN is specified as a null-terminated character string in a right-to-left fashion (right-to-left refers to
the ordering of RDNs from highest to lowest in the directory hierarchy). Note that embedded spaces are
taken as part of the attribute value for RDNs and do not require quotation marks. Also note that RDNs are
separated by commas (,) and attribute type/value pairs within an RDN are separated by plus (+) signs.
(Refer to IETF RFC 1779 A String Representation of Distinguished Names for more information.)

Function overview
The LDAP client API is provided in a set of C/C++ DLLs which is loaded at run time by applications that
use the LDAP API. The DLL that externalizes the LDAP programming interfaces is called GLDCLDAP . The
GLDCLDAP DLL makes use of two additional DLLs, GLDCMMN and GLDSCKS , which are loaded
automatically by the GLDCLDAP DLL. GLDDHUTD is also loaded. Refer to “Compiling, linking, and
running a program” on page 7 for details on how to link-edit a program to use the proper form of the LDAP
DLLs.

The PDS versions of the DLLs are installed into LPALIB . The symbolic link in /usr/lib points to an external
link for GLDCLDAP defined in /usr/lpp/ldapclient/lib .

The LDAP API consists of C language functions. All function names begin with the prefix ldap_ . The
functions can be broken down into six categories as shown in Table 1. The deprecated APIs are not
included in Table 1. For detailed information about each LDAP API and the list of deprecated APIs, see
Chapter 2, “LDAP routines” on page 19.

Chapter 1. LDAP programming 3

|
|

http://www.ietf.org/rfc/rfc1779.txt

Synchronous versions of the APIs have a suffix of _s (for example, ldap_add_s). The descriptions of the
APIs only show the asynchronous name of the API, but in general, it applies to both the synchronous and
asynchronous versions.

Table 1. LDAP API functions

Category Function name

Initialization /
termination

ldap_init
ldap_ssl_init , ldap_ssl_client_init ,
ldap_unbind , ldap_unbind_s

Primitive operations ldap_abandon
ldap_add , ldap_add_s
ldap_add_ext , ldap_add_ext_s
ldap_compare , ldap_compare_s
ldap_compare_ext , ldap_compare_ext_s
ldap_delete , ldap_delete_s
ldap_delete_ext , ldap_delete_ext_s
ldap_extended_operation , ldap_extended_operation_s
ldap_modify , ldap_modify_s
ldap_modify_ext , ldap_modify_ext_s
ldap_rename , ldap_rename_s
ldap_result
ldap_sasl_bind , ldap_sasl_bind_s
ldap_search , ldap_search_s , ldap_search_st
ldap_search_ext , ldap_search_ext_s
ldap_simple_bind , ldap_simple_bind_s

Error handling ldap_err2string
ldap_get_errno

Results processing ldap_count_attributes , ldap_first_attribute , ldap_next_attribute
ldap_count_entries , ldap_first_entry , ldap_next_entry
ldap_count_messages , ldap_count_references
ldap_count_values , ldap_get_values
ldap_count_values_len , ldap_get_values_len
ldap_first_message , ldap_first_reference
ldap_get_dn , ldap_get_entry_controls_np
ldap_explode_dn
ldap_msgid , ldap_msgtype
ldap_next_message , ldap_next_reference
ldap_parse_result , ldap_parse_reference_np
ldap_parse_extended_result , ldap_parse_sasl_bind_result

LDAP URL processing ldap_is_ldap_url
ldap_url_parse
ldap_url_search , ldap_url_search_s , ldap_url_search_st

Utility functions ldap_control_free , ldap_controls_free
ldap_enetwork_domain_get , ldap_enetwork_domain_set
ldap_memcache_init , ldap_memcache_set , ldap_memcache_get
ldap_memcache_flush , ldap_memcache_update , ldap_memcache_destroy
ldap_memfree , ldap_msgfree
ldap_mods_free , ldap_free_urldesc
ldap_set_option , ldap_set_option_np , ldap_get_option
ldap_server_conf_save , ldap_server_free_list , ldap_server_locate
ldap_set_rebind_proc
ldap_value_free , ldap_value_free_len

Following is a description of each type of function:

Initialization and termination functions
Initialization and termination functions are used to create and destroy LDAP handles.

4 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|

|

Primitive operations
Each primitive operation comes in two forms, an asynchronous as well as a synchronous form.
The synchronous form of the operation is specified by the functions that have the _s suffix. An
asynchronous LDAP operation allows multiple operations to be initiated by the client program
without waiting for the completion of each individual operation. The results of these asynchronous
operations are obtained by calling ldap_result . The synchronous form of the operation initiates the
operation, waits for results, and returns the results to the caller once the results are returned from
the server.

Note that ldap_search provides the capability to read a single entry, list the sub-entries below a
given entry, and search whole sub-trees below a given entry. In this way, all the primitive
operations allowed by the XDS programming interface are supported by the LDAP API.

Error handling functions
The error handling functions allow for extracting and displaying textual information about any
LDAP error code that may be returned to the application program.

Results processing functions
The results processing functions are used to interpret the results that come back from an
ldap_search operation or an ldap_extended_operation operation.

LDAP URL processing functions
The LDAP URL processing functions work with LDAP-style URLs as specified in IETF RFC 1959
An LDAP URL Format. An LDAP URL can specify the parameters necessary to perform an LDAP
search operation. These routines parse or use an LDAP URL to perform an LDAP search
operation.

Utility functions
Utility functions are provided for freeing storage that was allocated by the LDAP API on behalf of
the caller as well as for client caching and setting options that determine certain runtime
characteristics of the LDAP programming interface.

Using the socksified client
The z/OS LDAP C/C++ client can be used to contact LDAP servers through a SOCKS server. The LDAP
client has been “socksified” so that SOCKS Version 4 (V4) servers can be used to connect to LDAP
servers across firewalls on which a SOCKS V4 server is running. The code was developed by the IBM
Corporation, the University of California, Berkeley, and NEC Systems Laboratory.

In order to connect to an LDAP server through a SOCKS V4 server, the LDAP client must be provided the
location of the SOCKS server or servers in your environment. This can be done in one of two ways:
v Through environment variable settings
v Through environment variable settings along with a SOCKS configuration file (socks.conf).

Using only environment variables, the SOCKS_SERVER and RESOLVER_CONFIG environment variables
must be specified in the environment prior to invoking the ldap_init or ldap_ssl_init LDAP APIs. Using
environment variables along with a SOCKS configuration file, the SOCKS_CONF and
RESOLVER_CONFIG environment variables must be specified in the environment prior to invoking the
ldap_init or ldap_ssl_init LDAP APIs.

The RESOLVER_CONFIG environment variable specifies the shared domain name server dataset. Refer
to z/OS: Communications Server: IP Configuration Guide for details on specifying the
RESOLVER_CONFIG environment variable. This environment variable is required in order for Domain
Name Service (DNS) to Internet Protocol (IP) address look-ups (gethostbyname calls) to work in the
environment.

Chapter 1. LDAP programming 5

http://www.ietf.org/rfc/rfc1959.txt
http://www.ietf.org/rfc/rfc1959.txt

Using the SOCKS_SERVER environment variable allows an application that uses the LDAP APIs to
specify the location of the SOCKS V4 server to use in connecting to LDAP servers through the SOCKS
server. The format for the SOCKS_SERVER environment variable value is:
export SOCKS_SERVER=9.14.33.90

or
export SOCKS_SERVER=mysockserver.mycompany.com:1075

Using the SOCKS_CONF environment variable allows you to make use of a SOCKS configuration file to
consolidate the specification of the SOCKS server in your environment. Following is an example of the
format for the SOCKS_CONF environment variable:
export SOCKS_CONF=/home/scott/socks.conf

There are three keywords that may be used in the SOCKS configuration file:

v The sockd keyword tells the SOCKS client which SOCKS server or servers to use.

v The deny keyword tells the SOCKS client which IP address or addresses it should refuse.

v The direct keyword tells the SOCKS client that it should bypass the SOCKS server for the given IP
address or addresses.

When using the configuration file, the first matching line is used. Therefore, if you list your sockd keyword
before your direct or deny keywords, all connections will go through the SOCKS server even though there
is another matching line in the configuration file.

If the SOCKS_SERVER and SOCKS_CONF environment variables are not set, all connections are
assumed to be direct. If both the SOCKS_SERVER and SOCKS_CONF environment variables are set,
the SOCKS_CONF environment variable takes precedence.

The format of a socks.conf file is shown in Figure 1.

Figure 1. Sample socks.conf file

6 z/OS V1R4.0 Security Server LDAP Client Programming

|
|

Compiling, linking, and running a program
As previously stated, the LDAP programming interface is provided in a set of C/C++ DLLs. The DLLs will
be loaded at program run time so that calls to the functions in the interface can be made. In order to
compile and link-edit a program that uses the LDAP API, follow these guidelines:

1. Put
#include <ldap.h>

in all C or C++ source files that make calls to the LDAP programming interface.

2. When compiling, be sure to specify -D_OPEN_THREADS on the compile of the modules that include
<ldap.h>.

3. When compiling, be sure to specify -W0,DLL on the compile of the modules that make calls to the
LDAP API.

###
Sample SOCKS Configuration File
#
Configuration information is read from the SOCKD.CONF file. Entirely blank
lines are ignored. Lines which have a # in the first column are also ignored.
#
#
DENY dst_addr dst_mask
DIRECT dst_addr dst_mask
SOCKD {@=serverlist} dst_addr dst_mask
Where:
dst_addr is a dotted quad IP address
dst_mask is a dotted quad IP address
serverlist is a comma separated list containing the name or IP addresses
of SOCKS V4 servers (use IP address for speed). Each address
or name may be optionally followed by an explicit port number
as follows:
IPaddress:portNumber or name:portNumber
Note that the default port number is 1080.
For example, to use port 1081:
192.168.100.205:1081 or
mysocksserver:1081
#
#
On connect, each line is processed in order and the first line that matches
is used. If no line matches, the address is assumed to be Direct.
In order to cause all non-specific addresses to fail, place the
following line at the end of the file:
DENY 0.0.0.0 0.0.0.0
#
Matching is done by taking the destination address and ANDing it with the
dst_mask. The result is then compared to the dst_addr. If they match, then
if the userlist exists, the current username is compared against this list.
#
Note: In this example we are on network 192.168.100.x and the
socks server is on the 192.168.100.205 system. All LDAP
traffic to systems on the 192.168.100 net will be connected
directly, while traffic to all other addresses will be
through the SOCKS server.
#
###
DIRECT 192.168.100.0 255.255.255.0
SOCKD @=192.168.100.205 0.0.0.0 0.0.0.0
######################### END OF FILE ###

Chapter 1. LDAP programming 7

4. Be sure your application has POSIX(ON) so it can use the LDAP client APIs.

5. When link-editing, be sure to specify the LDAP “exports” file in the set of files to be link-edited with the
program. When compiling a program to run under the z/OS shell or to run from a PDS, this exports file
should be specified as /usr/lib/GLDCLDAP.x .

6. When running the program, be sure that the LDAP DLL is accessible. When running under the z/OS
shell, be sure that the LIBPATH environment variable includes /usr/lib . When running the program
from a z/OS dataset, the DLLs will be found in LPALIB .

7. If using SSL/TLS, follow these steps:

a. Put
#include <ldapssl.h>

in the C/C++ source files that include ldap.h .

b. Ensure that STEPLIB or LIBPATH identifies the DSNHLQ.SGSKLOAD DLL.

Here is an example of a Makefile that is used to build the LDAP example program which deletes an LDAP
entry. It shows one method of setting up the proper environment for building applications that use the
LDAP programming interface:
CFLAGS = -g -W0,DLL -D_OPEN_THREADS -Dmvs -DSSL
CC = c89

ldapdelete : ldapdelete.o
c89 -g -o ldapdelete ldapdelete.o /usr/lib/GLDCLDAP.x

LDAPDLET: ldapdelete.o
c89 -g -o "//’USER.LOAD(LDAPDLET)’" ldapdelete.o /usr/lib/GLDCLDAP.x
touch LDAPDLET

Using TSO and batch jobs
If you are using TSO and batch jobs to compile, link, and run LDAP client applications, you need to be
aware of the following additional information:

v Library SGLDHDRC (PDS) contains the header files LDAP and LBER (corresponds to HFS file names
ldap.h and lber.h) that are needed to compile LDAP client applications.

v Library SGLDEXPC (PDS) contains the export or side-deck file GLDCLDPX (corresponds to HFS file
name GLDCLDAP.x) that is needed by the pre-linker to resolve LDAP DLL function calls. At run time,
the LDAP functions are obtained from LPALIB module GLDCLDAP .

v For the C compile step, the following compiler options are needed:
CPARM=’LO,DLL,RENT,MARGINS(1,80),NOSEQ,DEF(SSL)’

Note: The MARGINS(1,80) and NOSEQ is needed because SGLDHDRC(LDAP) contains source lines that
extend into columns 73-80. If sequence numbers are present in the C program source then it is
necessary to manually update SGLDHDRC(LDAP) .

v The following item is also needed, and it is suggested that it be made part of the C source code:
#pragma runopts(POSIX(ON))

v It is necessary to process the compiler output with the pre-linker to resolve the references to the
functions that are in the LDAP DLL. For the pre-link step, specify the PARM OMVS. Also at pre-link
time, INCLUDE member GLDCLDPX from SGLDEXPC, for example:
//PLKED.SYSLIB DD DSN=GLD.SGLDEXPC,DISP=SHR
//PLKED.SYSIN2 DD *
INCLUDE SYSLIB(GLDCLDPX)
/*

8 z/OS V1R4.0 Security Server LDAP Client Programming

|

|

Using the API
Using the LDAP programming interface is relatively easy compared to using the XDS/XOM programming
interface. Where the XDS/XOM interfaces required setting up some complex nested arrays of XOM
structures, many of the parameters for LDAP APIs are simplified to null-terminated character strings. The
following sections describe each of the basic parts of a program that uses the LDAP programming
interface.

Basic structure
The basic structure of a program that uses the LDAP programming interface is the following:

1. Prior to initialization, SIGPIPE signals should be set to be ignored or a signal handler should be
defined. TCP/IP functions can cause SIGPIPE signals. When the signal is ignored, TCP/IP reflects the
signal as an EPIPE errno for the TCP/IP functions. An example of the signal ignore call looks like:
sigignore(SIGPIPE);

2. Initialize the LDAP programming interface and the connection to the directory server that accepts the
LDAP protocol using ldap_init .

An example call to ldap_init looks like:
LDAP *ld = ldap_init("yourhost.acmeInternational.com",

LDAP_PORT);

The first parameter specifies the DNS host name where the directory server is running and the second
parameter specifies the TCP/IP port number that the directory server is listening on for LDAP requests.
Port 389 is the default port assigned for LDAP communication. The identifier LDAP_PORT is set to
389.

If ldap_init is called with an empty LDAP URL, it uses ldap_server_locate to find the appropriate
server. See “ldap_server” on page 92 for more information about ldap_server_locate .

3. Bind to the Directory Service to establish an identity with the directory server by using
ldap_simple_bind or ldap_simple_bind_s .

An example call to ldap_simple_bind_s looks like:
rc = ldap_simple_bind_s(ld,

"cn=Jane Doe, ou=Marketing, o=Acme International, c=US",
password);

where password is a null-terminated character string presumably obtained from the user. The LDAP
handle returned from the ldap_init call is used as the first parameter to the ldap_simple_bind_s
operation. The ldap_sasl_bind and ldap_sasl_bind_s APIs are available for alternate authentication.

4. Perform LDAP operations such as add, modify, delete, compare and search using:
v ldap_add and ldap_add_s
v ldap_modify and ldap_modify_s
v ldap_delete and ldap_delete_s
v ldap_compare and ldap_compare_s
v ldap_search and ldap_search_s

along with calls to ldap_result for obtaining results from asynchronous operations. Also, interpret the
results obtained using the LDAP results processing routines. When using LDAP Version 3 protocol the
following APIs can be used:
v ldap_add_ext and ldap_add_ext_s
v ldap_delete_ext and ldap_delete_ext_s
v ldap_compare_ext and ldap_compare_ext_s
v ldap_search_ext and ldap_search_ext_s

Chapter 1. LDAP programming 9

|
|
|

|

Examples of calls to perform LDAP operations are provided in “Performing an operation”. See “Getting
results” on page 13 for examples of calls to ldap_result as well as calls to the LDAP results
processing routines. When using LDAP Version 3 protocol, ldap_parse_result can be used.

5. When all LDAP operations are completed, unbind and de-initialize the LDAP programming interface
using ldap_unbind or ldap_unbind_s . Note that ldap_unbind_s is identical in function to
ldap_unbind . It is provided as a convenience to those programs that only do synchronous operations
so that the unbind does not appear to be an asynchronous operation. All unbind operations are
synchronous. Also note that after the ldap_unbind or ldap_unbind_s function returns, the LDAP
handle that was returned by ldap_init is no longer valid and must not be used.

An example of ldap_unbind_s looks like:
rc = ldap_unbind_s(ld);

Note: In order to terminate the connection with an LDAP server, it is necessary to unbind, regardless
of whether an explicit bind (or ldap_init) was done.

It is acceptable to perform more than one ldap_init within the same program. More than one LDAP handle
can be allocated at the same time. This, however, will cause multiple TCP/IP socket connections to be
opened from the client program at the same time. This is discouraged when accessing only one directory
server. When multiple directory servers are to be accessed, multiple LDAP handles can be active
simultaneously.

Performing an operation
Each LDAP operation is performed by calling the associated LDAP API. Of the operations, ldap_add and
ldap_modify are the most complex to setup while ldap_search is the most complex to interpret the
results. It is not surprising that these deal with adding or changing and retrieving directory entry contents,
respectively.

An example call to each LDAP operation will be shown here along with a short explanation of each
parameter’s meaning. Refer to Chapter 2, “LDAP routines” on page 19 for details on the parameters to
each LDAP function in the LDAP API.

Example: adding an entry
modifications = (LDAPMod **)malloc(sizeof(LDAPMod *)*4);
for(i=0; i<3; i++) {

modifications[i] = (LDAPMod *)malloc(sizeof(LDAPMod));
modifications[i]->mod_op = LDAP_MOD_ADD;

}
modifications[3] = NULL;

modifications[0]->mod_type = "objectClass";
modifications[0]->mod_values = (char **)malloc(sizeof(char *)*2);
modifications[0]->mod_values[0] = "person";
modifications[0]->mod_values[1] = NULL;

modifications[1]->mod_type = "cn";
modifications[1]->mod_values = (char **)malloc(sizeof(char *)*2);
modifications[1]->mod_values[0] = "John Doe";
modifications[1]->mod_values[1] = NULL;

modifications[2]->mod_type = "sn";
modifications[2]->mod_values = (char **)malloc(sizeof(char *)*2);
modifications[2]->mod_values[0] = "Doe";
modifications[2]->mod_values[1] = NULL;
rc = ldap_add_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
modifications);

10 z/OS V1R4.0 Security Server LDAP Client Programming

The bulk of the work in calling ldap_add_s is in setting up the modifications array. Once this array is
constructed, the call to ldap_add_s is relatively simple. The modifications array represents all the
attributes (and associated values) that are to be present in the newly created entry. Note that if a binary
attribute value needs to be supplied, the pointer/length form of input should be used. In this case the
mod_op field of the attribute should be set to (LDAP_MOD_ADD |LDAP_MOD_BVALUES). This indicates
that the value passed in is binary and in pointer/length form.

When data is supplied in a null-terminated character string, it is assumed to be data in the codeset of the
current locale. This data will be converted to wire protocol prior to being passed to the LDAP server. No
conversions are performed on values supplied in pointer/length format. The exception to this is when the
LDAP_OPT_UTF8_IO option is set to LDAP_OPT_ON . In this case, all null-terminated strings are
assumed to be UTF-8 strings on input and no translation is performed.

Example: modifying an entry
modifications = (LDAPMod **)malloc(sizeof(LDAPMod *)*4);
for(i=0; i<3; i++) {

modifications[i] = (LDAPMod *)malloc(sizeof(LDAPMod));
}
modifications[3] = NULL;

modifications[0]->mod_op = LDAP_MOD_DELETE;
modifications[0]->mod_type = "sn";
modifications[0]->mod_values = (char **)malloc(sizeof(char *));
modifications[0]->mod_values[0] = NULL;

modifications[1]->mod_op = LDAP_MOD_ADD;
modifications[1]->mod_type = "email";
modifications[1]->mod_values = (char **)malloc(sizeof(char *)*2);
modifications[1]->mod_values[0] = "johnd@acme.com";
modifications[1]->mod_values[1] = NULL;

modifications[2]->mod_op = LDAP_MOD_REPLACE;
modifications[2]->mod_type = "email";
modifications[2]->mod_values = (char **)malloc(sizeof(char *)*2);
modifications[2]->mod_values[0] = "johnd@acmeInternational.com";
modifications[2]->mod_values[1] = NULL;
rc = ldap_modify_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
modifications);

The same modifications array construct that was used for an add operation is used for performing a
modify operation. The difference is that the mod_op field can take on values of LDAP_MOD_ADD ,
LDAP_MOD_REPLACE , or LDAP_MOD_DELETE . Just as for ldap_add , LDAP_MOD_BVALUES can be
bitwise ORed onto the mod_op field to indicate that binary values are supplied. The same conversion rules
are applicable for ldap_modify as were described for ldap_add .

Example: deleting an entire entry
msgid = ldap_delete(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US");
msgtype = ldap_result(ld, msgid, 1, NULL, &res);

It is important to note that the delete operation will fail if the entry to be deleted contains any sub-entries
below it in the directory hierarchy. Deletion is not recursive. The example shows how the message ID that
is returned from the asynchronous call is passed to the ldap_result function in order to wait for the results
of the operation.

Chapter 1. LDAP programming 11

Example: changing the RDN of an entry and relocating the entry
rc = ldap_rename_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US",
"cn=Jonathan Doe",
"ou=Sales, o=Acme International, c=US",
1,
NULL,
NULL);

Here, the RDN of the entry is changed and the entry is relocated. In this example:

v "cn=John Doe, ou=Marketing, o=Acme International, c=US",

is the DN of the entry to be renamed.

v "cn=Jonathan Doe",

is the new value of the RDN for the renamed entry.

v "ou=Sales, o=Acme International, c=US",

is the DN of the new superior (parent) node under which the entry will be moved; if no relocation is
being performed, this parameter should be NULL.

v 1,

is used to make this specification. In the example, the old RDN value is deleted.

v NULL,

represent server controls.

v NULL);

represent client controls.

When no controls are present, each respective parameter should be set to NULL. The X.500 data model
states that the attribute types and values that comprise the RDN of an entry are also part of the attribute
types and values of the entry itself. When the RDN of an entry is modified, it is the option of the program
to specify whether the attribute values that made up the old RDN be retained as attribute types and values
of the renamed entry.

Example: comparing an attribute value with its value in an entry in the
directory
rc = ldap_compare_s(ld,

"cn=Jonathan Doe, ou=Marketing, o=Acme International, c=US",
"email",
"johnd@acmeInternational.com");

This operation compared the supplied value ("johnd@acmeInternational.com") to all the values of the
email attribute in the entry
"cn=Jonathan Doe, ou=Marketing, o=Acme International, c=US"

If any of the values match, LDAP_COMPARE_TRUE is returned. If none of the email attribute’s values
match, then LDAP_COMPARE_FALSE is returned. If the attribute does not exist or some other error
occurs, an appropriate error code is returned.

Example: reading a directory entry’s contents
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
LDAP_SCOPE_BASE,
"(objectClass=*)",
NULL, 0, &res);

12 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|

|
|
|
|
|

Example: listing all objectClass attribute values for all entries directly
below a given entry
attrs[0] = "objectClass";
attrs[1] = NULL;
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
LDAP_SCOPE_ONELEVEL,
"(objectClass=*)",
attrs, 0, &res);

Example: reading all objectClass attribute values for all entries below
a given entry
attrs[0] = "objectClass";
attrs[1] = NULL;
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
LDAP_SCOPE_SUBTREE,
"(objectClass=*)",
attrs, 0, &res);

The ldap_search_s operations shown above exemplify a read, list, and search operation respectively, all
by using the ldap_search_s programming interface. In the case of the list operation, the ldap_get_dn
function can be used when looping over the returned results to extract just the distinguished name of the
sub-entries. Specifying NULL for the attributes parameter will result in all attribute types and values being
returned in the results sent to the client program.

Getting results
The LDAP results processing functions can be used to interpret the results returned from LDAP search
operations. Recall that the LDAP search operation is used to perform read and list operations as well.
When interpreting the results of a search operation it is usually necessary to loop over the returned
entries, for each entry loop over the set of returned attributes, and for each attribute, get the set of
attribute values for the attribute. The code to perform this results interpretation takes on a similar format in
each case.

An example of this type of processing is:
rc = ldap_search_s(ld,

"ou=Marketing, o=Acme International, c=US",
LDAP_SCOPE_SUBTREE,
"(;(cn=Jane*)(cn=Jon*))",
NULL, 0, &res);

for(entry = ldap_first_entry(ld, res);
entry != NULL;
entry = ldap_next_entry(ld, entry)) {

dn = ldap_get_dn(ld, entry);
printf("Entry: %s\n", dn);
ldap_memfree(dn);
for(attrtype = ldap_first_attribute(ld, entry, &ber);

attrtype != NULL;
attrtype = ldap_next_attribute(ld, entry, ber)) {
values = ldap_get_values(ld, entry, attrtype);
if (values != NULL) {

i=0;
while(values[i] != NULL) {

printf(" %s = %s\n", attrtype, values[i]);
i++;

}
ldap_value_free(values);

Chapter 1. LDAP programming 13

|

|

}
ldap_memfree(attrtype);

}
}

As shown by the code fragment, after getting to the attribute type and values for the returned entry,
null-terminated character strings are used to represent the attribute type and values. This greatly simplifies
accessing Directory Service information.

The ldap_get_values operation provides attribute values in the form of a null-terminated string. This
routine will convert the returned results into a null-terminated string in the codeset of the current locale.
The data is assured to be (ISO8859-1) coming from the LDAP server. If the data is binary data or
conversions should be avoided, then the ldap_get_values_len must be used. Data is supplied in
pointer/length format and no conversions are performed.

Error processing
There are four functions in the LDAP programming interface for handling errors returned from LDAP
operations. Each is used for a slightly different purpose but all accomplish the same goal of returning error
information to the calling program.

Using ldap_get_errno and ldap_parse_result
The most basic error handling function in the LDAP API is ldap_get_errno . This function simply returns
the most recent error condition that was logged by the LDAP programming interface against a given LDAP
handle. In the case of LDAP operations that result in errors, the error code value that was returned from
the directory server can be obtained by calling ldap_parse_result , passing in the LDAPMessage that was
returned from the LDAP operation.

There is a subtle difference between using ldap_get_errno and ldap_parse_result for asynchronous
operations. For asynchronous operations, if an error occurs during the process of sending the request to
the directory server, you must use ldap_get_errno to obtain the error value. Use the ldap_parse_result
call after a ldap_result call has completed. In the case of synchronous operations, either function can be
used. In addition, the synchronous functions also return the error code value for the programmer’s
convenience.

Be careful in a multi-threaded environment when using ldap_get_errno . If an LDAP operation completes
on a separate thread before ldap_get_errno examines the error code value on the current thread, the
error text returned by ldap_get_errno will reflect the result of the LDAP operation on the other thread. Use
the ldap_parse_result and ldap_err2string calls in these cases.

Example: retrieving the error code of an asynchronous operation request
msgid = ldap_delete(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US");
rc = ldap_get_errno(ld);
if (rc != LDAP_SUCCESS) {

/* process the error */

}

Example: retrieving the error code using ldap_parse_result
msgtype = ldap_result(ld, msgid, 1, NULL, &res);
rc = ldap_parse_result(ld, res, &server_rc, NULL, &errmsg, NULL, NULL, 0);
if ((rc == LDAP_SUCCESS) && (server_rc != LDAP_SUCCESS)) {

/* process the error */

}

14 z/OS V1R4.0 Security Server LDAP Client Programming

Using ldap_err2string and ldap_get_option
The ldap_err2string function will, given an LDAP error code, return a null-terminated character string that
provides a textual description of the error.

Another function available in the LDAP programming interface is ldap_get_option . When specified with
the LDAP_OPT_ERROR_NUMBER and LDAP_OPT_ERROR_STRING values, this function obtains the
LDAP error code and error message. These can then be issued in a message containing the text returned
by ldap_err2string on the standard error stream.

Be careful in a multi-threaded environment when using ldap_get_option . If an LDAP operation completes
on a separate thread before ldap_get_option examines the error code or error message values on the
current thread, the values returned by ldap_get_option will reflect the result of the LDAP operation on the
other thread. Use the ldap_parse_result and ldap_err2string calls in these cases.

Example: obtaining the character string representing the error code
rc = ldap_delete_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US");
if (rc != LDAP_SUCCESS) {

char *errString = ldap_err2string(rc);

/* use the error code and character string in a message or log file entry */

}

Example: sending the result of an operation to the standard error stream
rc = ldap_delete_s(ld,

"cn=John Doe, ou=Marketing, o=Acme International, c=US");
if (rc != LDAP_SUCCESS) {

fprintf(stderr, "Error on ldap_delete_s(): %s\n", ldap_err2string(rc));
ldap_get_option(ld, LDAP_OPT_ERROR_STRING, (void *)&errmsg);
fprintf(stderr, "additional info: %s\n", errmsg);
ldap_memfree(errmsg);

}

Tracing
Tracing can be enabled in the LDAP programming interface. This is done by one of two methods. The first
method is to use the ldap_set_option API, specifying the option to be set as LDAP_OPT_DEBUG or
LDAP_OPT_DEBUG_STRING . An example of enabling all trace classes using the ldap_set_option LDAP
API is:
rc = ldap_set_option(ld, LDAP_OPT_DEBUG, LDAP_DEBUG_ANY);

or
rc = ldap_set_option(ld, LDAP_OPT_DEBUG_STRING, "ANY");

The value specified for LDAP_OPT_DEBUG_STRING is a string which can have the same values as the
LDAP_DEBUG environment variable.

The call to ldap_set_option can occur at any point after calling ldap_init and prior to calling ldap_unbind
or ldap_unbind_s .

Consult Table 2 on page 16 for a specification of the trace classes.

The second method for enabling tracing is to set the LDAP_DEBUG environment variable. The value for
LDAP_DEBUG is a mask that may be specified as follows:

v A decimal value (for example, 32)

v A hexadecimal value (for example, x20 or X20)

Chapter 1. LDAP programming 15

|
|

|
|

|

v A keyword (for example, FILTER)

v A construct of those values using plus and minus signs to indicate inclusion or exclusion of a value. For
example:

– ’32768+8’ is the same as specifying ’32776’, or ’x8000+x8’, or ’ERROR+CONNS’

– ’2146959359’ is the same as specifying ’ANY-STRBUF’

Table 2 lists the debug levels and the related decimal, hexadecimal, and keyword values.

Table 2. Debug levels

Keyword Decimal Hexadecimal Description

OFF 0 0x00000000 No debugging

TRACe 1 0x00000001 Entry and exit from routines

PACKets 2 0x00000002 Packet activity

ARGS 4 0x00000004 Data arguments from requests

CONNs 8 0x00000008 Connection activity

BER 16 0x00000010 Encoding and decoding of data, including ASCII
and EBCDIC translations, if applicable

FILTer 32 0x00000020 Search filters

MESSage 64 0x00000040 Messaging subsystem activities and events

ACL 128 0x00000080 Access Control List activities

STATs 256 0x00000100 Operational statistics

THREad 512 0x00000200 Threading activities

REPLication 1024 0x00000400 Replication activities

PARSe 2048 0x00000800 Parsing activities

PERFormance 4096 0x00001000 Relational backend performance statistics

8192 0x00002000 Reserved

REFErral 16384 0x00004000 Referral activities

ERROr 32768 0x00008000 Error conditions

SYSPlex 65536 0x00010000 Sysplex/WLM activities

MULTIServer 131072 0x00020000 Multi-server activities

LDAPBE 262144 0x00040000 Connection between a frontend and a backend

STRBuf 524288 0x00080000 UTF-8 support activities

TDBM 1048576 0x00100000 Relational backend activities (TDBM)

SCHEma 2097152 0x00200000 Schema support activities (TDBM)

BECApabilities 4194304 0x00400000 Backend capabilities

CACHe 8388608 0x00800000 Cache activities

ANY 2147483647 0x7FFFFFFF All levels of debug

Note: The minimum abbreviation for each keyword is shown in uppercase letters.

Note that the LDAP_DEBUG environment variable can be used without recompiling the client program and
provides a means of enabling tracing without changing the client program. The ldap_set_option call can
be used for limiting the areas of client program operation that should be traced. Trace output is put on the
standard error stream.

An example of enabling all trace classes using the LDAP_DEBUG environment variable (assuming the
program is running from the z/OS shell) is to enter:

16 z/OS V1R4.0 Security Server LDAP Client Programming

||||

export LDAP_DEBUG=ANY

on the z/OS shell command line prior to running the client program.

Thread safety
The LDAP programming interface is thread safe. This is currently implemented by serializing all operations
that are made against a particular LDAP handle. Multiple operations can be safely initiated from multiple
threads in the client program. To have these operations sent to the directory server for possible parallel
processing by the server, asynchronous operations must be used. An alternative is to initialize multiple
LDAP handles. This alternative is not recommended as it will cause multiple open TCP/IP socket
connections between the client program and the directory server.

Client-side search results caching
Client-side search results caching is supported. It can be enabled for specific LDAP connections using the
ldap_memcache APIs, or globally for all connections by setting environment variables. See
“ldap_memcache” on page 70 for details.

Synchronous versus asynchronous operation
The asynchronous operations in the LDAP programming interface allow multiple operations to be started
from the LDAP client without first waiting for each operation to complete. This can be quite beneficial in
allowing multiple outstanding search operations from the client program. Searches which take less time to
complete can be returned without waiting for a more complicated search to complete.

However, there is some interplay with the thread safety support. In order to allow LDAP operations to be
performed from multiple client program threads, operations are serialized. As ldap_result is an LDAP
operation, if an ldap_result is initiated on one client thread, any other ldap_result initiated on another
client thread will be held up until the ldap_result on the first thread has completed. So, in order to
effectively use asynchronous operations to the advantage of the client program, calls to ldap_result
should be formulated to complete as quickly as possible so as not to hold up other LDAP operations
possibly initiated on other threads from being started. It is recommended that calls to ldap_result be made
to wait for the first available result instead of waiting for specific results when running in a multi-threaded
environment.

With synchronous operations, even though multiple operations can be initiated on separate threads, the
thread safety support will serialize these requests at the client, prohibiting these requests from being
initiated to the server. To ensure that the operations are initiated to the server, asynchronous operations
should be used when running in an environment where multiple client program threads may be making
calls to the LDAP programming interface.

Calling the LDAP APIs from other languages
In order for a COBOL application to call the C LDAP client APIs, the COBOL application must call a C
application which, in turn, invokes the LDAP APIs. However, if the COBOL application is link-edited into a
separate load module from a C program that calls the LDAP APIs, then the COBOL load module needs to
be either link-edited with a CEEUOPT that has POSIX(ON), or POSIX(ON) has to be passed to it as a
runtime option, which is equivalent. See z/OS: Language Environment Customization for more information.

LDAP client for Java
An industry-standard Java programming language interface exists to access the LDAP server directory
services through the Java Naming and Directory Interface (JNDI). You can find the information about how
to use the LDAP service provider interface (LDAP SPI) for JNDI in documentation from Sun Microsystems.

Chapter 1. LDAP programming 17

If you are just beginning to use JNDI in your applications, we recommend you use Sun’s implementation
located at:
http://www.javasoft.com/products/jndi/docs.html

For customers who have been using the IBM JNDI LDAP service provider rather than the Sun JNDI
service provider, migration may be necessary. The IBM JNDI service provider is no longer shipped. Use
the Sun JNDI service provider. If you have been using the IBM JNDI service provider in order to be able to
use SSL capabilities on z/OS, migration will be necessary. All Java SSL capabilities are provided using
JSSE. See the JSSE Web site (http://www.javasoft.com/products/jsse/) for more information.

18 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|

http://www.javasoft.com/products/jndi/docs.html
http://www.javasoft.com/products/jsse/

Chapter 2. LDAP routines

This chapter describes the Lightweight Directory Access Protocol (LDAP) routines which are grouped
according to function. The LDAP routines provide access through TCP/IP to directory services which
accept the LDAP protocol.

The following references may be helpful when using the LDAP APIs:

v Chapter 1, “LDAP programming” on page 1 explains how to write applications using the LDAP APIs.

v Appendix A, “LDAP header files” on page 141 describes and shows the contents of the header files.

v Appendix C, “Example programs” on page 161 shows sample programs that use the LDAP APIs.

v z/OS: Security Server LDAP Server Administration and Use contains information about the LDAP server.

Deprecated LDAP APIs: Although the following APIs are still supported, their use is deprecated. Use of
the newer replacement APIs is strongly encouraged:
v ldap_bind (use ldap_simple_bind)
v ldap_bind_s (use ldap_simple_bind_s)
v ldap_modrdn (use ldap_rename)
v ldap_modrdn_s (use ldap_rename_s)
v ldap_open (use ldap_init)
v ldap_perror (use ldap_parse_result or ldap_get_option)
v ldap_result2error (use ldap_parse_result)
v ldap_ssl_start (use ldap_ssl_client_init and ldap_ssl_init)

Following is a summary of the LDAP routines:

ldap_abandon
Abandons an asynchronous LDAP operation that is in progress. (See “ldap_abandon” on page 28.)

ldap_abandon_ext
Abandons an asynchronous operation with controls. (See “ldap_abandon” on page 28.)

ldap_add
Performs an asynchronous LDAP add operation. (See “ldap_add” on page 30.)

ldap_add_ext
Performs an asynchronous LDAP add operation with controls. (See “ldap_add” on page 30.)

ldap_add_ext_s
Performs a synchronous LDAP add operation with controls. (See “ldap_add” on page 30.)

ldap_add_s
Performs a synchronous LDAP add operation. (See “ldap_add” on page 30.)

ldap_compare
Performs an asynchronous LDAP compare operation. (See “ldap_compare” on page 37.)

ldap_compare_ext
Performs an asynchronous LDAP compare operation with controls. (See “ldap_compare” on
page 37.)

ldap_compare_ext_s
Performs a synchronous LDAP compare operation with controls. (See “ldap_compare” on
page 37.)

ldap_compare_s
Performs a synchronous LDAP compare operation. (See “ldap_compare” on page 37.)

ldap_control_free
Frees a single LDAPControl structure. (See “ldap_memfree” on page 73.)

© Copyright IBM Corp. 1999, 2002 19

ldap_controls_free
Frees an array of LDAPControl structures. (See “ldap_memfree” on page 73.)

ldap_count_attributes
Counts the number of attributes in an entry returned as part of a search result. (See
“ldap_first_entry/reference” on page 50.)

ldap_count_entries
Retrieves a count of the entries in a chain of search results. (See “ldap_get_dn” on page 53.)

ldap_count_messages
Returns the number of messages in a result chain, as returned by ldap_result . (See
“ldap_message” on page 74.)

ldap_count_references
Returns the number of continuation references in a chain of search results. (See
“ldap_first_entry/reference” on page 50.)

ldap_count_values
Counts the number of values in an array of attribute values. (See “ldap_get_values” on page 54.)

ldap_count_values_len
Counts the number of pointers to values in an array of attribute values. (See “ldap_get_values” on
page 54.)

ldap_delete
Performs an asynchronous LDAP delete operation. (See “ldap_delete” on page 39.)

ldap_delete_ext
Performs an asynchronous LDAP delete operation with controls. (See “ldap_delete” on page 39.)

ldap_delete_ext_s
Performs a synchronous LDAP delete operation with controls. (See “ldap_delete” on page 39.)

ldap_delete_s
Performs a synchronous LDAP delete operation. (See “ldap_delete” on page 39.)

ldap_enetwork_domain_get
Retrieves the user’s default eNetwork domain name. (See “ldap_enetwork_domain” on page 41.)

ldap_enetwork_domain_set
Sets the user’s default eNetwork domain name. (See “ldap_enetwork_domain” on page 41.)

ldap_err2string
Provides a textual description of an error message. (See “ldap_error” on page 42.)

ldap_explode_dn
Parses LDAP distinguished names. (See “ldap_get_dn” on page 53.)

ldap_extended_operation
Initiates an asynchronous extended operation. (See “ldap_extended_operation” on page 46.)

ldap_extended_operation_s
Initiates a synchronous extended operation. (See “ldap_extended_operation” on page 46.)

ldap_first_attribute
Begins stepping through an LDAP entry’s attributes. (See “ldap_first_entry/reference” on page 50.)

ldap_first_entry
Retrieves the first entry in a chain of search results. (See “ldap_get_dn” on page 53.)

ldap_first_message
Retrieves the first message in a result chain, as returned by ldap_result . (See “ldap_message” on
page 74.)

20 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_first_reference
Retrieves the first continuation reference in a chain of search results. (See “ldap_get_dn” on
page 53.)

ldap_free_urldesc
Deallocates an LDAP URL description obtained from a call to ldap_url_parse . (See “ldap_url” on
page 112.)

ldap_get_dn
Obtains LDAP distinguished names from an LDAP entry. (See “ldap_get_dn” on page 53.)

ldap_get_entry_controls_np
Extracts server controls from an entry. (See “ldap_get_dn” on page 53.)

ldap_get_errno
Retrieves the last error code set by an LDAP operation. (See “ldap_error” on page 42.)

ldap_get_option
Retrieves the current value of an LDAP option. (See “ldap_init” on page 57.)

ldap_get_values
Retrieves attribute values from an LDAP entry in NULL-terminated character strings. (See
“ldap_get_values” on page 54.)

ldap_get_values_len
Retrieves attribute values from an LDAP entry in pointer/length format. (See “ldap_get_values” on
page 54.)

ldap_init
Initializes an LDAP context. (See “ldap_init” on page 57.)

ldap_is_ldap_url
Checks whether a character string represents an LDAP Uniform Resource Locator (URL). (See
“ldap_url” on page 112.)

ldap_memcache_destroy
Frees all resources associated with a cache handle. (See “ldap_memcache” on page 70.)

ldap_memcache_flush
Removes specific cached search requests based on base and scope. (See “ldap_memcache” on
page 70.)

ldap_memcache_get
Obtains the cache handle associated with an LDAP handle. (See “ldap_memcache” on page 70.)

ldap_memcache_init
Creates a client-side cache for caching LDAP search requests. (See “ldap_memcache” on
page 70.)

ldap_memcache_set
Activates search request caching over a specific LDAP handle. (See “ldap_memcache” on
page 70.)

ldap_memcache_update
Removes all cached search requests whose TTL has expired. (See “ldap_memcache” on
page 70.)

ldap_memfree
Deallocates character strings allocated by the LDAP programming interface. (See “ldap_memfree”
on page 73.)

ldap_modify
Performs an asynchronous LDAP modify operation. (See “ldap_modify” on page 76.)

Chapter 2. LDAP routines 21

ldap_modify_ext
Performs an asynchronous LDAP modify operation with controls. (See “ldap_modify” on page 76.)

ldap_modify_ext_s
Performs a synchronous LDAP modify operation with controls. (See “ldap_modify” on page 76.)

ldap_modify_s
Modifies LDAP entries synchronously. (See “ldap_modify” on page 76.)

ldap_mods_free
Deallocates a NULL-terminated array of modification structures. (See “ldap_modify” on page 76.)

ldap_msgfree
Deallocates the memory allocated for a result. (See “ldap_rename” on page 82.)

ldap_msgid
Retrieves the message ID associated with an LDAP message. (See “ldap_result” on page 85.)

ldap_msgtype
Retrieves the next attribute type name in an LDAP result. (See “ldap_result” on page 85.)

ldap_next_attribute
Deallocates a NULL-terminated array of modification structures. (See “ldap_first_entry/reference”
on page 50.)

ldap_next_entry
Retrieves the next entry in a chain of search results to parse. (See “ldap_get_dn” on page 53.)

ldap_next_message
Retrieves the next message in a result chain, as returned by ldap_result . (See “ldap_message”
on page 74.)

ldap_next_reference
Retrieves the next continuation reference in a chain of search results. (See “ldap_get_dn” on
page 53.)

ldap_parse_extended_result
Extracts information from extended operation results. (See “ldap_parse_result” on page 79.)

ldap_parse_reference_np
Extracts information from a continuation reference. (See “ldap_get_dn” on page 53.)

ldap_parse_result
Extracts information from results. (See “ldap_parse_result” on page 79.)

ldap_parse_sasl_bind_result
Extracts server credentials from SASL bind results. (See “ldap_parse_result” on page 79.)

ldap_rename
Performs an asynchronous LDAP rename operation. (See “ldap_rename” on page 82.)

ldap_rename_s
Performs a synchronous LDAP rename operation. (See “ldap_rename” on page 82.)

ldap_result
Waits for the result of an LDAP operation. (See “ldap_result” on page 85.)

ldap_sasl_bind
Binds to an LDAP server asynchronously in order to perform directory operations using the Simple
Authentication Security Layer (SASL). (See “ldap_bind” on page 32.)

ldap_sasl_bind_s
Binds to an LDAP server synchronously in order to perform directory operations using the Simple
Authentication Security Layer (SASL). (See “ldap_bind” on page 32.)

22 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_search
Performs an asynchronous LDAP search operation. (See “ldap_search” on page 87.)

ldap_search_ext
Performs an asynchronous LDAP search operation with controls. (See “ldap_search” on page 87.)

ldap_search_ext_s
Performs a synchronous LDAP search operation with controls. (See “ldap_search” on page 87.)

ldap_search_s
Performs a synchronous LDAP search operation. (See “ldap_search” on page 87.)

ldap_search_st
Performs a synchronous LDAP search operation allowing a time-out to be specified to limit the
time to wait for results. (See “ldap_search” on page 87.)

ldap_server_conf_save
Stores published LDAP server information into the local configuration file. (See “ldap_server” on
page 92.)

ldap_server_free_list
Frees the list of servers and associated LDAPServerInfo structures returned from
ldap_server_locate . (See “ldap_server” on page 92.)

ldap_server_locate
Returns a published list of candidate LDAP servers. (See “ldap_server” on page 92.)

ldap_set_option
Sets the value of an LDAP option. (See “ldap_init” on page 57.)

ldap_set_option_np
Sets the value of an LDAP option. This API is nonportable. (See “ldap_init” on page 57.)

ldap_set_rebind_proc
Establishes a call-back function for rebinding during referrals chasing. (See “ldap_bind” on
page 32.)

ldap_simple_bind
Binds to an LDAP server asynchronously using simple authentication in order to perform directory
operations. (See “ldap_bind” on page 32.)

ldap_simple_bind_s
Binds to an LDAP server synchronously using simple authentication in order to perform directory
operations. (See “ldap_bind” on page 32.)

ldap_ssl_client_init
Initializes the SSL library. (See “ldap_ssl” on page 107.)

ldap_ssl_init
Initializes an SSL connection. (See “ldap_ssl” on page 107.)

ldap_unbind
Unbinds from an LDAP server asynchronously and deallocates an LDAP handle. (See “ldap_init”
on page 57.)

ldap_unbind_s
Unbinds from an LDAP server synchronously and deallocates an LDAP handle. (See “ldap_init” on
page 57.)

ldap_url_parse
Breaks down an LDAP URL into its component pieces. (See “ldap_url” on page 112.)

ldap_url_search
Initiates an asynchronous LDAP search based on an LDAP URL. (See “ldap_url” on page 112.)

Chapter 2. LDAP routines 23

ldap_url_search_s
Initiates a synchronous LDAP search based on an LDAP URL. (See “ldap_url” on page 112.)

ldap_url_search_st
Initiates a synchronous LDAP search based on an LDAP URL allowing a time-out to be specified
to limit the time to wait for results. (See “ldap_url” on page 112.)

ldap_value_free
Deallocates values returned by ldap_get_values . (See “ldap_get_values” on page 54.)

ldap_value_free_len
Deallocates values returned by ldap_get_values_len . (See “ldap_get_values” on page 54.)

LDAP controls
Certain LDAP Version 3 operations can be extended with the use of controls. Controls can be sent to a
server, or returned to the client with any LDAP message. This type of control is called a server control.

The LDAP API also supports a client-side extension mechanism, which can be used to define client
controls. The client-side controls affect the behavior of the LDAP client library, and are never sent to the
server. A common data structure is used to represent both server-side and client-side controls:
typedef struct ldapcontrol {

char *ldctl_oid;
struct berval ldctl_value;
char ldctl_iscritical;

} LDAPControl, *PLDAPControl;

The LDAPControl fields have the following definitions:

ldctl_oid
Specifies the control type, presented as a string.

ldctl_value
Specifies the data associated with the control (if any). To specify a zero-length value, set
ldctl_value.bv_len to zero and ldctl_value.bv_val to a zero-length string. To indicate that no data
is associated with the control, set ldctl_value.bv_val to NULL.

ldctl_iscritical
Specifies whether the control is critical. If this field is nonzero (critical), the operation is performed
only if the control is appropriate for the operation and it is recognized and supported by the server
(or the client for client-side controls). In this case, the control is used in performing the operation.

If this field is zero (noncritical), the control is used in performing the operation only if it is
appropriate for the operation and it is recognized and supported by the server (or the client for
client-side controls). Otherwise, the control will be ignored.

Controls are specified on the LDAP API as lists of controls. Control lists are represented as a
NULL-terminated array of pointers to LDAPControl structures.

Session controls
Many of the LDAP Version 3 APIs which perform LDAP operations accept a list of controls (for example,
ldap_search_ext). Alternatively, a list of controls that affects each operation performed on a given LDAP
handle can be set using the ldap_set_option API. These are called session controls. Session controls
apply to the given operation when NULL is specified for the corresponding control list parameter on the
API. If a list of controls is specified for the control parameter on the API, these are used instead of the
session controls on the given operation. If session controls are set, but a specific request does not want
any controls, an empty list of controls should be specified for the control parameter. (This is different from
a NULL parameter; it is a pointer to an array containing a single NULL.)

24 z/OS V1R4.0 Security Server LDAP Client Programming

Session controls also apply to the nonextended APIs which perform LDAP operations. So although
ldap_search , for example, does not accept control list parameters, it will include a server control on its
request if there was a server control set up through ldap_set_option .

Supported client controls
Currently, the only client controls supported by this library are: ibm-serverHandledSearchRequest ,
ibm-saslBindDigestUserName or ibm-saslBindCramUserName , and ibm-saslBindDigestRealmName
or ibm-saslBindCramRealmName .

Name: ibm-serverHandledSearchRequest

Numeric OID: 1.3.18.0.2.10.7

Purpose: Provides the ability to selectively bypass cache usage per search request.

Criticality: TRUE or FALSE . If TRUE, then if used on an operation which does not support this control,
the request fails with LDAP_UNAVAILABLE_CRITICAL_EXTENSION . If FALSE , operations which do not
support this control will ignore its presence and still service the request. This control is only supported by
LDAP search operations. (See “ldap_search” on page 87.)

Value:
ibm-serverHandledSearchRequest ::= SEQUENCE {

cacheResults BOOLEAN DEFAULT FALSE
}

Meaning:

v If the control is not present, the search request can be handled from the cache, if it is cached. If the
search request is not cached, the search is passed on to the server, and the results can be cached.

v If the control is present, then if the cacheResults flag is FALSE (or not present, that is, an empty
SEQUENCE), then the client must bypass the cache, send the request to the server, and bypass adding
the results to the cache.

v If the control is present, then if the cacheResults flag is TRUE, then whether or not the search request
is cached, the search is passed onto the server, and the results can be cached.

Notes:

1. The cacheResults must be a BER encoded sequence, if specified. For coding convenience, ldap.h
defines the constants BER_ENCODED_BOOLEAN_TRUE and BER_ENCODED_BOOLEAN_FALSE .
Additionally, the IBM_SERVER_HANDLED_SEARCH_REQUEST_OID constant is defined and
represents the numeric OID for this control. Following is an example of defining an
ibm-serverHandledSearchRequest control:
static LDAPControl skipCacheControl = { IBM_SERVER_HANDLED_SEARCH_REQUEST_OID, /* OID */

{sizeof(BER_ENCODED_BOOLEAN_FALSE)-1, BER_ENCODED_BOOLEAN_FALSE}, /* false */
LDAP_OPT_ON /* critical */

};

When skipCacheControl is supplied as a client control on a search request, the search request will
not be satisfied from a client cache. Similarly, the search results will not be stored in a client cache.

2. This control is only supported by the LDAP search operations. (See “ldap_search” on page 87.)

3. This control is only applicable if client-side caching is enabled. (See “ldap_memcache” on page 70.)

Name: ibm-saslBindDigestUserName or ibm-saslBindCramUserName

Numeric OID: 1.3.18.0.2.10.13

Chapter 2. LDAP routines 25

|
|

|
|

|
|

|

|

Purpose: Provides the ability to specify the user name authentication identity for a CRAM-MD5 or
DIGEST-MD5 SASL authentication bind.

Criticality: TRUE or FALSE . If TRUE, then if used on an operation which does not support this control,
the request fails with LDAP_UNAVAILABLE_CRITICAL_EXTENSION . If FALSE , operations which do not
support this control will ignore its presence and still service the request. This control is only supported by
LDAP bind operations. (See “ldap_bind” on page 32.)

Value:
ibm-saslBindDigestUserName {

userName LDAPString
}

ibm-saslCramDigestUserName {
userName LDAPString

}

The string userName is a NULL terminated string in either local code page or UTF-8 depending upon the
setting in the client.

Meaning:

If the control is present and CRAM-MD5 or DIGEST-MD5 authentication is desired, then the userName is
the identity used for authentication binding.

Notes:

1. For coding convenience, ldap.h defines the constant IBM_CLIENT_MD5_USER_NAME_OID as the
numeric OID for this control. Following is an example of defining an ibm-saslBindDigestUserName or
ibm-saslBindCramUserName control:
static LDAPControl userControl = { IBM_CLIENT_MD5_USER_NAME_OID, /* OID */

{ strlen("jon"), "jon" }, /* username */
LDAP_OPT_OFF /* non-critical */

};

When userControl is supplied as a client control on a bind request, the bind request will use the
username authentication identity for performing the DIGEST-MD5 or CRAM-MD5 SASL bind that is
desired.

2. This control is only supported by the LDAP bind operation. (See “ldap_bind” on page 32.)

Name: ibm-saslBindDigestRealmName or ibm-saslBindCramRealmName

Numeric OID: 1.3.18.0.2.10.12

Purpose: Provides the ability to specify the realm name for a CRAM-MD5 or DIGEST-MD5 SASL
authentication bind.

Criticality: TRUE or FALSE . If TRUE, then if used on an operation which does not support this control,
the request fails with LDAP_UNAVAILABLE_CRITICAL_EXTENSION . If FALSE , operations which do not
support this control will ignore its presence and still service the request. This control is only supported by
LDAP bind operations. (See “ldap_bind” on page 32.)

Value:
ibm-saslBindDigestRealmName ::=SEQUENCE {

realmName LDAPString
}

ibm-saslCramRealmName ::=SEQUENCE {
realmName LDAPString

}

26 z/OS V1R4.0 Security Server LDAP Client Programming

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|

|

|
|

|
|
|
|

Meaning:

If the control is present and CRAM-MD5 or DIGEST-MD5 authentication is desired, then the realmName is
used to select a realm in which to bind.

Notes:

1. For coding convenience, ldap.h defines the constant IBM_CLIENT_MD5_REALM_NAME_OID as the
numeric OID for this control. Following is an example of defining an ibm-sasIBindDigestRealmName
or ibm-sasIBindCramRealmName control:
static LDAPControl realmControl = { IBM_CLIENT_MD5_REALM_NAME_OID, /* OID */

{ strlen("myrealm.ibm.com"), "myrealm.ibm.com" }, /* realm name */
LDAP_OPT_OFF /* non-critical */

};

When realmControl is supplied as a client control on a bind request, the bind request will use the
realm name for performing the DIGEST-MD5 or CRAM-MD5 bind that is desired.

2. This control is only supported by the LDAP bind operation. (See “ldap_bind” on page 32.)

Using RACF ® data
There are some restrictions when updating information stored in RACF, a component of the Security
Server for z/OS, over the LDAP protocol. See the information about accessing RACF information in z/OS:
Security Server LDAP Server Administration and Use.

Chapter 2. LDAP routines 27

ldap_abandon
ldap_abandon
ldap_abandon_ext

Purpose
Abandon an asynchronous LDAP operation that is in progress.

Format
#include <ldap.h>

int ldap_abandon(
LDAP *ld,
int msgid)

int ldap_abandon_ext(
LDAP *ld,
int msgid,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

msgid
The message ID of an outstanding LDAP operation as returned by a call to an asynchronous
operation such as ldap_search , ldap_modify , and so on.

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter may be set to NULL. See “Supported client
controls” on page 25 for more information about client controls.

Usage
The ldap_abandon and ldap_abandon_ext APIs are used to abandon or cancel an LDAP operation in
progress.

Both APIs check to see if the result of the operation has already been returned by the server. If it has, it
deletes it from the queue of pending received messages. If not, it sends an LDAP abandon operation to
the LDAP server.

The result of an abandoned operation will not be returned from a future call to ldap_result .

Session controls set by the ldap_set_option API apply to both ldap_abandon and ldap_abandon_ext .
The ldap_abandon_ext API allows controls to be specified which override the session controls for the
given call.

Error conditions
The ldap_abandon API returns 0 if it is successful, -1 otherwise. Use ldap_get_errno to retrieve the error
value. See “ldap_error” on page 42 for possible values.

The ldap_abandon_ext API returns LDAP_SUCCESS if successful, otherwise an error code is returned.

ldap_abandon

28 z/OS V1R4.0 Security Server LDAP Client Programming

Related topics
ldap_result
ldap_error

ldap_abandon

Chapter 2. LDAP routines 29

ldap_add
ldap_add
ldap_add_s
ldap_add_ext
ldap_add_ext_s

Purpose
Perform an LDAP add operation.

Format
#include <ldap.h>

int ldap_add(
LDAP *ld,
char *dn,
LDAPMod *attrs[])

int ldap_add_s(
LDAP *ld,
char *dn,
LDAPMod *attrs[])

int ldap_add_ext(
LDAP *ld,
char *dn,
LDAPMod *attrs [],
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_add_ext_s(
LDAP *ld,
char *dn,
LDAPMod *attrs[],
LDAPControl **serverctrls,
LDAPControl **clientctrls)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

dn Specifies the distinguished name of the entry to add.

attrs
A NULL-terminated array of the entry’s attributes. The LDAPMod structure is used to represent
attributes, with the mod_type and mod_values fields being used as described under ldap_modify , and
the mod_op field being used only if you need to specify the LDAP_MOD_BVALUES option.
Otherwise, it should be set to 0. The LDAPMod structure is shown in “ldap_modify” on page 76.

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter may be set to NULL. See “Supported client
controls” on page 25 for more information about client controls.

Output

ldap_add

30 z/OS V1R4.0 Security Server LDAP Client Programming

msgidp
This result parameter is set to the message ID of the request if the ldap_add_ext API succeeds.

Usage
Note that all entries except that specified by the last component in the given DN must already exist.

When data is supplied in a NULL-terminated character string, it is assumed to be data in the codeset of
the current locale. This data will be converted to UTF-8 prior to being passed to the LDAP server. No
conversions are performed on values supplied in pointer/length format (that is, those values specified in
berval structures and when LDAP_MOD_BVALUES is specified).

The ldap_add_ext API initiates an asynchronous add operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_add_ext places the message ID of the request in *msgidp. A subsequent call to ldap_result can be
used to obtain the result of the operation. The ldap_parse_result API is used to extract information from
the result, including any error information.

Similarly, the ldap_add API initiates an asynchronous add operation and returns the message ID of the
request it initiated. The result of this operation can be obtained by calling ldap_result , and result
information can be extracted by calling ldap_parse_result .

The synchronous ldap_add_ext_s and ldap_add_s APIs both return the resulting error code of the add
operation.

All four of the LDAP add APIs support session controls set by the ldap_set_option API. The
ldap_add_ext and ldap_add_ext_s APIs both allow LDAP Version 3 server controls and client controls to
be specified with the request which overrides the session controls.

Error conditions
The ldap_add API returns -1 in case of an error initiating the request. Use ldap_get_errno to retrieve the
error value. See “ldap_error” on page 42 for possible values.

The ldap_add_s , ldap_add_ext , and ldap_add_ext_s APIs return LDAP_SUCCESS if successful,
otherwise an error code is returned. See “ldap_error” on page 42 for possible values.

If the add is directed to an z/OS LDAP server running with an SDBM database, the ldap_add APIs can
return LDAP_OTHER and have completed a partial update to an entry in RACF. The results will match
what would occur if the update were done using the RACF altuser command. If several RACF attributes
are being updated and one of them is in error, RACF reports on the error, but still updates the other
attributes. The RACF message text is also returned in the result.

Related topics
ldap_modify

ldap_add

Chapter 2. LDAP routines 31

ldap_bind
ldap_sasl_bind
ldap_sasl_bind_s
ldap_simple_bind
ldap_simple_bind_s
ldap_set_rebind_proc
ldap_bind (deprecated)
ldap_bind_s (deprecated)

Purpose
LDAP routines for binding and unbinding.

Format
#include <ldap.h>

int ldap_sasl_bind(
LDAP *ld,
char *who,
char *mechanism,
struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_sasl_bind_s(
LDAP *ld,
char *who,
char *mechanism,
struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp)

int ldap_simple_bind(
LDAP *ld,
char *who,
char *passwd)

int ldap_simple_bind_s(
LDAP *ld,
char *who,
char *passwd)

void ldap_set_rebind_proc(
LDAP *ld,
LDAPRebindProc rebindproc)

int ldap_bind(
LDAP *ld,
char *who,
char *cred,
int method)

int ldap_bind_s(
LDAP *ld,
char *who,
char *cred,
int method)

Parameters
Input

ldap_bind

32 z/OS V1R4.0 Security Server LDAP Client Programming

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

who
Specifies the distinguished name of the entry as which to bind. If the mechanism chosen is either
LDAP_MECHANISM_CRAM or LDAP_MECHANISM_DIGEST , then this represents the authorization
identity distinguished name which will be used to perform the authentication checks on the LDAP
server.

cred
Specifies the password used in association with the DN of the entry (who) as which to bind for simple
authentication. Arbitrary credentials can be passed using this parameter. In most cases, this is the
DN’s password.

When using a SASL bind, the format and content of the credentials depends on the setting of the
mechanism parameter. If the mechanism is either LDAP_MECHANISM_CRAM or
LDAP_MECHANISM_DIGEST , then the bv_val field of the berval structure should point to the
credentials that will be used for the bind of the userName specified in the LDAPControl
ibm-saslBindDigestUserName or ibm-saslCramDigestUserName .

mechanism
Although a variety of mechanisms have been IANA (Internet Assigned Numbers Authority) registered,
the only mechanisms supported at this time are: LDAP_SASL_SIMPLE ,
LDAP_MECHANISM_EXTERNAL , LDAP_MECHANISM_GSSAPI , LDAP_MECHANISM_CRAM , and
LDAP_MECHANISM_DIGEST .

In order to use the UTF-8 versions of these mechanism strings, it is necessary to set the
LDAP_OPT_UTF8_IO option to LDAP_OPT_ON with the ldap_set_option API.

The following table shows the strings that are defined in the ldap.h header file that should be used
depending upon the bind mechanism that is desired.

Mechanism LDAP_OPT_OFF LDAP_OPT_ON

SIMPLE LDAP_SASL_SIMPLE LDAP_SASL_SIMPLE

EXTERNAL LDAP_MECHANISM_EXTERNAL LDAP_MECHANISM_EXTERNAL_UTF8

GSSAPI LDAP_MECHANISM_GSSAPI LDAP_MECHANISM_GSSAPI_UTF8

CRAM-MD5 LDAP_MECHANISM_CRAM LDAP_MECHANISM_CRAM_UTF8

DIGEST-MD5 LDAP_MECHANISM_DIGEST LDAP_MECHANISM_DIGEST_UTF8

method
Selects the authentication method to use. Specify LDAP_AUTH_SIMPLE for simple authentication.
(Simple authentication is the only supported method.)

passwd
Specifies the password used in association with the DN of the entry as which to bind.

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter may be set to NULL. See “Supported client
controls” on page 25 for more information about client controls.

rebindproc
Specifies the pointer to a function that will be invoked to gather the information necessary to bind to
another LDAP server.

Output

ldap_bind

Chapter 2. LDAP routines 33

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

||||

|||

|||

|||

|||

|||

|
|
|

msgidp
This result parameter is set to the message ID of the request if the ldap_sasl_bind call succeeds.

servercredp
This result parameter is set to the credentials returned by the server. If no credentials are returned, it
will be set to NULL .

Usage
These APIs provide various interfaces to the LDAP bind operation. After the LDAP handle is initialized with
ldap_init , an LDAP bind operation must be performed before other operations can be attempted over the
connection. Both synchronous and asynchronous version of each variant of the bind API are provided.

When communicating with an LDAP server that supports the LDAP Version 3 protocol, bind is optional.
The absence of a bind will be interpreted by the LDAP Version 3 server as a request for unauthenticated
access. A bind is required by LDAP servers that only support the LDAP Version 2 protocol.

Simple authentication
The simplest form of the bind call is the synchronous API ldap_simple_bind_s . It takes the DN to bind as,
as well as the password associated with that DN (supplied in passwd). It returns an LDAP error indication
(see “ldap_error” on page 42). The ldap_simple_bind call is asynchronous, taking the same parameters
but only initiating the bind operation and returning the message ID of the request it sent. The result of the
operation can be obtained by a subsequent call to ldap_result .

General authentication
The ldap_bind and ldap_bind_s routines are deprecated. They can be used when the authentication
method to use needs to be selected at run time. They both take an extra method parameter selecting the
authentication method to use. However, method must be set to LDAP_AUTH_SIMPLE , to select simple
authentication (the only supported method). The ldap_bind returns the message ID of the initiated
request. The ldap_bind_s API returns an LDAP error indication, or LDAP_SUCCESS on successful
completion.

SASL authentication
The ldap_sasl_bind and ldap_sasl_bind_s APIs can be used to do simple, certificate, CRAM-MD5 and
DIGEST-MD5 authentication over LDAP through the use of the Simple Authentication Security Layer
(SASL). The ldap_sasl_bind_s API can also be used for Kerberos Version 5 binds. For information on
setting up Kerberos on your z/OS system, see z/OS: Security Server Network Authentication Service
Administration.

By setting mechanism to LDAP_SASL_SIMPLE the SASL bind request will be interpreted as a request for
simple authentication (that is, equivalent to using ldap_simple_bind or ldap_simple_bind_s). By setting
mechanism to LDAP_MECHANISM_EXTERNAL , the SASL bind request will be interpreted as a request
for certificate authentication. By setting mechanism to LDAP_MECHANISM_GSSAPI , the SASL bind
request is interpreted as a request for Kerberos Version 5 authentication. By setting mechanism to
LDAP_MECHANISM_CRAM , the SASL bind request will be interpreted as a request for CRAM-MD5
authentication. By setting mechanism to LDAP_MECHANISM_DIGEST , the SASL bind request will be
interpreted as a request for DIGEST-MD5 authentication.

With this implementation, there are several primary reasons for using the SASL bind APIs. The first reason
is to use the client authentication mechanism provided by SSL to strongly authenticate to the directory
server, using the client’s X.509 certificate. A server that supports this mechanism can then access the
directory using the strongly authenticated client identity (as extracted from the client’s X.509 certificate).
For example, the client application can use the following logic:

1. ldap_ssl_client_init (initialize the SSL library)

ldap_bind

34 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|

2. ldap_ssl_init (host, port, name), where name references a public/private key pair in the client’s key
ring file

3. ldap_sasl_bind_s (ld, who=NULL, mechanism=LDAP_MECHANISM_EXTERNAL, cred=NULL...)

The second reason is to use the authentication mechanism provided by Kerberos Version 5. This method
requires the application to have obtained a valid Ticket Granting Ticket (TGT) prior to invoking the
ldap_sasl_bind_s API. Once a client and server that supports this mechanism have authenticated each
other, the client can access the directory with the identity contained in the credentials used in the
authentication process. To see how this mapping takes place in the directory, see z/OS: Security Server
LDAP Server Administration and Use.

The third reason is to use the authentication mechanisms provided by either CRAM-MD5 or DIGEST-MD5.
Both of these methods provide different manners of hashing the password with the challenge that is sent
back from the server instead of sending the password in the clear.

By setting mechanism to a NULL pointer, the SASL bind request will be interpreted as a request for simple
authentication (that is, equivalent to using ldap_simple_bind or ldap_simple_bind_s).

Rebinding while following referrals
When the LDAP client is returned a referral to a different LDAP server, it may need to rebind to that
server. In order to do this, the client must have the proper credentials available to pass to the target LDAP
server. Normally, these credentials are passed on the ldap_simple_bind function invocation. During
referrals processing, however, this must be done when needed by the LDAP client. The rebind procedure
is called twice when attempting to rebind to an LDAP server: once to obtain the credentials for the user
and once to allow the rebind procedure to release any storage that was allocated by the first call to the
rebind procedure. If a referral is sent from the server to the client on a CRAM-MD5 or DIGEST-MD5 bind,
the referral will not be followed. CRAM-MD5 and DIGEST-MD5 binds do not follow referrals.

The rebindproc parameter is a pointer to a function that has the following prototype:
int ldapRebindProc(

LDAP *ld,
char **dnp,
char **passwdp,
int *authmethodp,
int freeit)

When the rebind procedure is invoked and the freeit input parameter is zero (0), the rebind procedure
should set the dnp, passwdp, and authmethodp fields before returning to the caller. The only supported
authentication methods for rebinding are LDAP_AUTH_SIMPLE and LDAP_AUTH_SASL_30 .
LDAP_AUTH_SASL_30 can only be used if the desired rebind mechanism is Kerberos Version 5. In this
scenario, the dnp parameter and the passwdp parameter should be set to NULL in the function. The
credentials that will be used for the automatic rebind will be the credentials that were used on the current
bind. Also, the client can only rebind using Kerberos if the current bind context for the client was Kerberos
(that is, you cannot use LDAP_AUTH_SASL_30 , Kerberos Version 5, for the rebind method if you are
currently bound to the directory using a DN and password, SSL, or anonymous). Also, the client cannot
remove the credentials it bound with from its credential cache if it wants to rebind using Kerberos. The
credentials must remain for the life of the current bind.

LDAP_SUCCESS should be returned if the fields were successfully returned to the caller, otherwise one of
the error codes defined in ldap.h should be returned by the rebind procedure to the caller. If the return
code is not set to LDAP_SUCCESS , the operation will be stopped and the specified error code will be
returned to the original caller.

ldap_bind

Chapter 2. LDAP routines 35

|
|
|

|
|

When the rebind procedure is invoked and the freeit input parameter is nonzero, the rebind procedure
should release any storage that was acquired by a previous call to the rebind procedure where the freeit
parameter was zero. When the freeit parameter field is nonzero, the dnp, passwdp, and authmethodp
parameters should be treated as input parameters.

If a rebind procedure is not established, then the client library will use unauthenticated access when
following referrals to additional servers.

Error conditions
The ldap_sasl_bind , ldap_simple_bind , ldap_unbind , and ldap_bind APIs return -1 in case of an error
initiating the request. Use ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for
possible values.

The ldap_sasl_bind_s , ldap_simple_bind_s , ldap_unbind_s , and ldap_bind_s APIs return
LDAP_SUCCESS if successful, otherwise an error code is returned. See “ldap_error” on page 42 for
possible values.

Related topics
ldap_error control

ldap_bind

36 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_compare
ldap_compare
ldap_compare_s
ldap_compare_ext
ldap_compare_ext_s

Purpose
Perform an LDAP compare operation.

Format
#include <ldap.h>

typedef struct berval {
unsigned long bv_len;
char *bv_val;

};

int ldap_compare(
LDAP *ld,
char *dn,
char *attr,
char *value)

int ldap_compare_s(
LDAP *ld,
char *dn,
char *attr,
char *value)

int ldap_compare_ext(
LDAP *ld,
char *dn,
char *attr,
struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_compare_ext_s(
LDAP *ld,
char *dn,
char *attr,
struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

dn Specifies the distinguished name of the entry upon which to perform the compare.

attr
Specifies the attribute type to compare to the attribute found in the entry.

bvalue
Specifies the attribute value to compare against the value in the entry. This parameter is used in the

ldap_compare

Chapter 2. LDAP routines 37

ldap_compare_ext and ldap_compare_ext_s APIs, and is a pointer to a berval structure (see
“ldap_get_values” on page 54), and is used to compare binary values.

value
Specifies the attribute value to compare to the value found in the entry. This parameter is used in the
ldap_compare and ldap_compare_s APIs, and is used to compare string attributes. Use
ldap_compare_ext or ldap_compare_ext_s if you need to compare binary values.

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter may be set to NULL. See “Supported client
controls” on page 25 for more information about client controls.

Output

msgidp
This result parameter is set to the message ID of the request if the ldap_compare_ext API succeeds.

Usage
The ldap_compare_ext API initiates an asynchronous compare operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_compare_ext places the message ID of the request in *msgidp. A subsequent call to ldap_result
can be used to obtain the result of the operation. The ldap_parse_result API is used to extract
information from the result, including any error information. The error code indicates if the operation
completed successfully (LDAP_COMPARE_TRUE or LDAP_COMPARE_FALSE). Any other error code
indicates a failure performing the operation.

Similarly, the ldap_compare API initiates an asynchronous compare operation and returns the message
ID of the request it initiated. The result of the compare can be obtained by a subsequent call to
ldap_result , and result information can be extracted by calling ldap_parse_result .

The synchronous ldap_compare_s and ldap_compare_ext_s APIs both return the resulting error code of
the compare operation.

All four of the LDAP compare APIs support session controls set by the ldap_set_option API. The
ldap_compare_ext and ldap_compare_ext_s APIs both allow LDAP Version 3 server controls and client
controls to be specified with the request which overrides the session controls.

Error conditions
The ldap_compare API returns -1 in case of an error initiating the request. Use ldap_get_errno to
retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_compare_s API returns LDAP_COMPARE_TRUE (if the entry contains the attribute value) or
LDAP_COMPARE_FALSE (if the entry does not contain the attribute value) if successful, otherwise an
error code is returned. See “ldap_error” on page 42 for possible values.

Related topics
ldap_error

ldap_compare

38 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_delete
ldap_delete
ldap_delete_s
ldap_delete_ext
ldap_delete_ext_s

Purpose
Perform an LDAP delete operation.

Format
#include <ldap.h>

int ldap_delete(
LDAP *ld,
char *dn)

int ldap_delete_s(
LDAP *ld,
char *dn)

int ldap_delete_ext(
LDAP *ld,
char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_delete_ext_s(
LDAP *ld,
char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

dn Specifies the distinguished name of the entry to be deleted.

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter may be set to NULL. See “Supported client
controls” on page 25 for more information about client controls.

Output

msgidp
This result parameter is set to the message ID of the request if the ldap_delete_ext API succeeds.

Usage
Note that the entry to delete must be a leaf entry (that is, it must not have any children). Deletion of entire
subtrees in a single operation is not supported by LDAP. However, the sdelete example program provides

ldap_delete

Chapter 2. LDAP routines 39

example code on how deletion of a subtree of LDAP entries could be performed. The example programs
can be found in the /usr/lpp/ldap/examples directory.

The ldap_delete_ext API initiates an asynchronous delete operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_delete_ext places the message ID of the request in *msgidp. A subsequent call to ldap_result can
be used to obtain the result of the operation. The ldap_parse_result API is used to extract information
from the result, including any error information. The error code indicates if the operation completed
successfully. The ldap_parse_result API is used to check the error code in the result.

Similarly, the ldap_delete API initiates an asynchronous delete operation and returns the message ID of
the request it initiated. The result of the delete can be obtained by a subsequent call to ldap_result , and
result information can be extracted by calling ldap_parse_result .

The synchronous ldap_delete_s and ldap_delete_ext_s perform LDAP delete operations and both return
the resulting error code of the compare operation.

All four of the LDAP delete APIs support session controls set by the ldap_set_option API. The
ldap_delete_ext and ldap_delete_ext_s APIs both allow LDAP Version 3 server controls and client
controls to be specified with the request which overrides the session controls.

Error conditions
The ldap_delete API returns -1 in case of an error initiating the request. Use ldap_get_errno to retrieve
the error value. See “ldap_error” on page 42 for possible values.

The ldap_delete_s API returns LDAP_SUCCESS if successful, otherwise an error code is returned. See
“ldap_error” on page 42 for possible values.

Related topics
ldap_error

ldap_delete

40 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_enetwork_domain
ldap_enetwork_domain_set
ldap_enetwork_domain_get

Purpose
Manage a user’s eNetwork domain.

Format
#include <ldap.h>

int ldap_enetwork_domain_set(
char *edomain,
char *filename)

int ldap_enetwork_domain_get(
char **edomainp,
char *filename)

Parameters
Input

edomain
Specifies the eNetwork domain.

filename
Specifies the fully-qualified file name where to store or retrieve a user’s eNetwork domain. If NULL, the
default file (/home/user/ldap_user_info) is used.

Output

edomainp
Specifies the eNetwork domain, as returned from ldap_enetwork_domain_get .

Usage
The ldap_enetwork_domain_set API is used to set the user’s default eNetwork domain name. The
ldap_enetwork_domain_get API is used to retrieve the user’s default eNetwork domain name. If an error
occurs, no string is returned. To free the returned string, use ldap_memfree .

The eNetwork domain name (along with the user’s default Domain Name Service (DNS) domain name) is
used to identify the user’s LDAP authentication domain. For example, if a user’s eNetwork domain name is
chicago, and the user’s DNS domain is midwest.illinois.com, then information can be published in DNS
that associates ldap.chicago.midwest.illinois.com with a collection of LDAP servers (one or more
masters and replicas). This permits applications to easily find an appropriate LDAP authentication server
by using the ldap_server_locate API.

An application can retrieve the eNetwork domain name by calling ldap_enetwork_domain_get .

Error conditions
The ldap_enetwork_domain_set and ldap_enetwork_domain_get APIs return LDAP_SUCCESS if
successful, otherwise an error code is returned. See “ldap_error” on page 42 for possible values.

Related topics
ldap_server_locate
ldap_error
ldap_memfree

ldap_enetwork_domain

Chapter 2. LDAP routines 41

|

|
|

ldap_error
ldap_get_errno
ldap_perror (deprecated)
ldap_result2error (deprecated)
ldap_err2string

Purpose
LDAP protocol error handling routines.

Format
#include <ldap.h>

int ldap_get_errno(
LDAP *ld)

void ldap_perror(
LDAP *ld,
char *s)

int ldap_result2error(
LDAP *ld,
LDAPMessage *res,
int freeit)

char *ldap_err2string(
int err)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

s Specifies the message prefix, which is prepended to the string form of the error code held stored
under the LDAP handle. The string form of the error is the same string that would be returned by a call
to ldap_err2string .

res
Specifies an LDAP result that was returned by a previous call to ldap_result or one of the
synchronous LDAP search routines (see “ldap_search” on page 87).

freeit
Specifies whether to deallocate the res LDAP result. If nonzero, the res parameter is deallocated as
part of the call to ldap_result2error .

err Specifies the error to be described.

Usage
These APIs provide interpretation of the various error codes returned by the LDAP protocol and LDAP
library APIs.

It is sometimes inconvenient to pass the return code of an LDAP operation back to the caller in the case
of an error. Further, for asynchronous LDAP operations, no error code is returned by the call. In each of
these cases, the ldap_get_errno API can be used to retrieve the last set error code for the LDAP handle
that is passed on input.

ldap_error

42 z/OS V1R4.0 Security Server LDAP Client Programming

Note: In multi-threaded applications, the value returned by the ldap_get_errno routine is the last error set
by the last LDAP operation performed against the LDAP handle. It is possible for an LDAP
operation on a different thread to reset the error value stored under the LDAP handle before the
original error code is retrieved.

The ldap_perror API prints the message prefix followed by the result of a call to ldap_err2string
(ldap_get_errno(ld)) to the standard error stream.

Note: In multi-threaded applications, the error text printed corresponds to the last error value set by the
last LDAP operation performed against the LDAP handle. It is possible for an LDAP operation on a
different thread to reset the error value stored under the LDAP handle before the original error text
is retrieved.

The ldap_result2error API takes res, a result as produced by ldap_result , or the synchronous LDAP
search operation routines and returns the corresponding error code.

The ldap_err2string API provides interpretation of the various error codes returned by the LDAP protocol
and LDAP library routines and returned by the ldap_get_errno API.

The ldap_err2string API is used to convert the numeric LDAP error code, as returned by
ldap_parse_result or ldap_parse_sasl_bind_result , or one of the synchronous APIs, into a
NULL-terminated character string that describes the error. Do not modify or attempt to deallocate this
string.

Error conditions
The possible values for an LDAP error code are listed in the following table.

Table 3. LDAP error codes and descriptions

Value Text (English version) Detailed description

LDAP_SUCCESS Success The request was successful.

LDAP_OPERATIONS_ERROR Operations error An operations error occurred.

LDAP_PROTOCOL_ERROR Protocol error A protocol violation was detected.

LDAP_TIMELIMIT_EXCEEDED Timelimit exceeded An LDAP time limit was exceeded.

LDAP_SIZELIMIT_EXCEEDED Sizelimit exceeded An LDAP size limit was exceeded.

LDAP_COMPARE_FALSE Compare false A compare operation returned false.

LDAP_COMPARE_TRUE Compare true A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTED Strong authentication not supported The LDAP server does not support
strong authentication.

LDAP_STRONG_AUTH_REQUIRED Strong authentication required Strong authentication is required for
the operation.

LDAP_PARTIAL_RESULTS Partial results and referral received Partial results only returned.

LDAP_REFERRAL Referral returned Referral returned.

LDAP_ADMIN_LIMIT_EXCEEDED Administration limit exceeded Administration limit exceeded.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION Critical extension not supported Critical extension is not supported.

LDAP_CONFIDENTIALITY_REQUIRED Confidentiality is required Confidentiality is required.

LDAP_SASLBIND_IN_PROGRESS SASL bind in progress A SASL bind is in progress.

LDAP_NO_SUCH_ATTRIBUTE No such attribute The attribute type specified does not
exist in the entry.

LDAP_UNDEFINED_TYPE Undefined attribute type The attribute type specified is not
valid.

LDAP_INAPPROPRIATE_MATCHING Inappropriate matching Filter type not supported for the
specified attribute.

ldap_error

Chapter 2. LDAP routines 43

Table 3. LDAP error codes and descriptions (continued)

Value Text (English version) Detailed description

LDAP_CONSTRAINT_VIOLATION Constraint violation An attribute value specified violates
some constraint (for example, a postal
Address has too many lines, or a line
that is too long).

LDAP_TYPE_OR_VALUE_EXISTS Type or value exists An attribute type or attribute value
specified already exists in the entry.

LDAP_INVALID_SYNTAX Invalid syntax An attribute value that is not valid was
specified.

LDAP_NO_SUCH_OBJECT No such object The specified object does not exist in
the directory.

LDAP_ALIAS_PROBLEM Alias problem An alias in the directory points to a
nonexistent entry.

LDAP_INVALID_DN_SYNTAX Invalid DN syntax A DN that is syntactically not valid
was specified.

LDAP_IS_LEAF Object is a leaf The object specified is a leaf.

LDAP_ALIAS_DEREF_PROBLEM Alias dereferencing problem A problem was encountered when
dereferencing an alias.

LDAP_INAPPROPRIATE_AUTH Inappropriate authentication Inappropriate authentication was
specified (for example,
LDAP_AUTH_SIMPLE was specified
and the entry does not have a user
password attribute).

LDAP_INVALID_CREDENTIALS Invalid credentials Credentials that were not valid were
presented (for example, the wrong
password).

LDAP_INSUFFICIENT_ACCESS Insufficient access The user has insufficient access to
perform the operation.

LDAP_BUSY DSA is busy The DSA is busy.

LDAP_UNAVAILABLE DSA is unavailable The DSA is unavailable.

LDAP_UNWILLING_TO_PERFORM DSA is unwilling to perform The DSA is unwilling to perform the
operation.

LDAP_LOOP_DETECT Loop detected A loop was detected.

LDAP_NAMING_VIOLATION Naming violation A naming violation occurred.

LDAP_OBJECT_CLASS_VIOLATION Object class violation An object class violation occurred (for
example a “required” attribute was
missing from the entry).

LDAP_NOT_ALLOWED_ON_NONLEAF Operation not allowed on nonleaf The operation is not allowed on a
nonleaf object.

LDAP_NOT_ALLOWED_ON_RDN Operation not allowed on RDN The operation is not allowed on an
RDN.

LDAP_ALREADY_EXISTS Already exists The entry already exists.

LDAP_NO_OBJECT_CLASS_MODS Cannot modify object class Object class modifications are not
allowed.

LDAP_RESULTS_TOO_LARGE Results too large Results too large.

LDAP_AFFECTS_MULTIPLE_DSAS Affects multiple DSAs Affects multiple DSAs.

LDAP_OTHER Unknown error An unknown error occurred.

LDAP_SERVER_DOWN Can’t contact LDAP server The LDAP library cannot contact the
LDAP server.

LDAP_LOCAL_ERROR Local error Some local error occurred. This is
usually a failed memory allocation.

LDAP_ENCODING_ERROR Encoding error An error was encountered encoding
parameters to send to the LDAP
server.

ldap_error

44 z/OS V1R4.0 Security Server LDAP Client Programming

Table 3. LDAP error codes and descriptions (continued)

Value Text (English version) Detailed description

LDAP_DECODING_ERROR Decoding error An error was encountered decoding a
result from the LDAP server.

LDAP_TIMEOUT Timed out A timelimit was exceeded while
waiting for a result.

LDAP_AUTH_UNKNOWN Unknown authentication method The authentication method specified
on a bind operation is not known.

LDAP_FILTER_ERROR Bad search filter A filter that was not valid was supplied
to ldap_search (for example,
unbalanced parentheses).

LDAP_USER_CANCELLED User cancelled operation The user cancelled the operation.

LDAP_PARAM_ERROR Bad parameter to an ldap routine A LDAP routine was called with a bad
parameter (for example, a NULL ld
pointer).

LDAP_NO_MEMORY Out of memory A memory allocation call (for example,
malloc) failed in an LDAP library
routine.

LDAP_CONNECT_ERROR Connection error Connection error.

LDAP_NOT_SUPPORTED Not supported Not supported.

LDAP_CONTROL_NOT_FOUND Control not found Control not found.

LDAP_NO_RESULTS_RETURNED No results returned No results returned.

LDAP_MORE_RESULTS_TO_RETURN More results to return More results to return

LDAP_URL_ERR_NOTLDAP URL doesn’t begin with ldap:// The URL does not begin with ldap://

LDAP_URL_ERR_NODN URL has no DN (required) The URL does not have a DN which is
required.

LDAP_URL_ERR_BADSCOPE URL scope string is invalid The URL scope string is not valid.

LDAP_URL_ERR_MEM Can’t allocate memory space Cannot allocate memory space.

LDAP_CLIENT_LOOP Client loop Client loop.

LDAP_REFERRAL_LIMIT_EXCEEDED Referral limit exceeded Referral limit exceeded.

LDAP_SSL_ALREADY_INITIALIZED ldap_ssl_client_init successfully called
previously in this process

The ldap_ssl_client_init API was
successfully called previously in this
process.

LDAP_SSL_INITIALIZE_FAILED SSL Initialization call failed SSL initialization call failed.

LDAP_SSL_CLIENT_INIT_NOT_CALLED Must call ldap_ssl_client_init before
attempting to use SSL connection

Must call ldap_ssl_client_init before
attempting to use SSL connection.

LDAP_SSL_PARAM_ERROR Invalid SSL parameter previously
specified

A SSL parameter that was not valid
was previously specified.

LDAP_SSL_HANDSHAKE_FAILED SSL handshake with the server failed Failed to connect to SSL server.

LDAP_SSL_GET_CIPHER_FAILED Failed to retrieve cipher code Failed to retrieve the cipher code for
SSL.

LDAP_NO_EXPLICIT_OWNER No explicit owner found An explicit owner does not exist.

LDAP_NO_EXPLICIT_ACL No explicit acl found An explicit ACL does not exist.

LDAP_SSL_NOT_AVAILABLE , SSL support is not available SSL support is not available.

Related topics
ldap_memfree
ldap_parse_result

ldap_error

Chapter 2. LDAP routines 45

|||

ldap_extended_operation
ldap_extended_operation
ldap_extended_operation_s

Purpose
Perform extended operations.

Format
#include <ldap.h>

int ldap_extended_operation(
LDAP *ld,
const char *reqoid,
const struct berval *reqdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_extended_operation_s(
LDAP *ld,
const char *reqoid,
const struct berval *reqdata,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
char **resultoidp,
struct berval **resultdatap)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

reqoid
Specifies the dotted-OID text string that identifies the extended operation to be performed by the
server.

reqdata
Specifies the arbitrary data required by the extended operation. (If NULL, no data is sent to the
server.)

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter should be set to NULL because client controls
are not currently supported for extended operations. See “Supported client controls” on page 25 for
more information about client controls.

Output

msgidp
Specifies a pointer to a result parameter that is set to the message ID of the request if the
ldap_extended_operation API is successfully sent to the server. Use ldap_result and then
ldap_parse_extended_result to get the results.

resultoidp
Specifies a result parameter is set to point to a character string that is set to an allocated, dotted-OID
text string returned from the server. Free this string using the ldap_memfree API. If no OID is
returned, resultoidp is set to NULL.

ldap_extended_operation

46 z/OS V1R4.0 Security Server LDAP Client Programming

resultdatap
Specifies a pointer to a result parameter that is set to a pointer to a berval structure pointer that is set
to an allocated copy of the data returned by the server. Free this struct berval using the code supplied
in the Notes below. If no data is returned, resultdatap is set to NULL.

Usage
The ldap_extended_operation API is used to initiate an asynchronous extended operation, which returns
LDAP_SUCCESS if the extended operation was successfully sent, or an LDAP error code if not. If
successful, the ldap_extended_operation API places the message ID of the request in msgidp. A
subsequent call to ldap_result can be used to obtain the result of the extended operation, which can then
be passed to ldap_parse_extended_result to obtain the OID and data contained in the response.

The ldap_extended_operation_s function is used to initiate a synchronous extended operation, which
returns the result of the operation, either LDAP_SUCCESS if the operation was successful, or another
LDAP error code if it was not. The retoid and retdata parameters are filled in with the OID and data from
the response. If no OID or data was returned, these parameters are set to NULL, respectively.

If the LDAP server does not support the extended operation, the server will reject the request.

To determine if the requisite extended operation is supported by the server, get the root DSE of the LDAP
server, and check for the supportedExtension attribute. If the values for this attribute include the object
identifier (OID) of your extended operation, then the server supports the extended operation. If the
supportedExtension attribute is not present in the root DSE, then the server is not configured to support
any extended operations. See “Searching a server’s root DSE” on page 140 for details on accessing the
root DSE.

Notes
These routines allocate storage. Use ldap_memfree to free the returned OID. Use the following code to
free the returned struct berval:
if (resultdatap != NULL) {

if (resultdatap->bv_val != NULL) {
ldap_memfree(resultdatap->bv_val);

}
ldap_memfree((char *)resultdatap);

}

Error conditions
The ldap_extended_operation_s API returns the LDAP error code resulting from the operation.

The ldap_extended_operation API returns -1 instead of a valid msgid if an error occurs, setting the
session error in the LD structure, which can be obtained by using ldap_get_errno .

See “ldap_error” on page 42 for more details.

Related topics
ldap_error
ldap_result

ldap_extended_operation

Chapter 2. LDAP routines 47

ldap_first_attribute
ldap_count_attributes
ldap_first_attribute
ldap_next_attribute

Purpose
Step through LDAP entry attributes.

Format
#include <ldap.h>

int ldap_count_attributes(
LDAP *ld,
LDAPMessage *entry);

char *ldap_first_attribute(
LDAP *ld,
LDAPMessage *entry,
BerElement **ber)

char *ldap_next_attribute(
LDAP *ld,
LDAPMessage *entry,
BerElement *ber)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

entry
The attribute information as returned by ldap_first_entry or ldap_next_entry .

Output

ber
Returns a pointer to a BerElement structure that is allocated to keep track of its current position.

Usage
Given an LDAP handle and an LDAPMessage, the ldap_count_attributes API returns the number of
attributes contained in the returned entry. In many cases, it is desirable to know the total number of
attributes contained in an LDAPMessage that was returned from an LDAP search operation.

The ldap_count_attributes API is designed to accept a pointer to the LDAPMessage structure returned
from calls to ldap_first_entry and ldap_next_entry .

The ldap_first_attribute and ldap_next_attribute APIs are used to step through the attributes in an
LDAP entry. The ldap_first_attribute API takes an entry as returned by ldap_first_entry or
ldap_next_entry and returns a pointer to a buffer containing the name of the first attribute type in the
entry. This buffer must be deallocated when its use is completed using ldap_memfree .

The pointer returned in ber should be passed to subsequent calls to ldap_next_attribute and is used to
step through the entry’s attributes. This pointer is deallocated by ldap_next_attribute when there are no
more attributes (that is, when ldap_next_attribute returns NULL). Otherwise, the caller is responsible for
deallocating the BerElement pointed to by ber when it is no longer needed by calling ldap_memfree .

ldap_first_attribute

48 z/OS V1R4.0 Security Server LDAP Client Programming

The attribute names returned by ldap_first_attribute and ldap_next_attribute are suitable for inclusion in
a call to ldap_get_values or ldap_get_values_len to retrieve the attribute’s values. Following is an
example:
for (attrtype=ldap_first_attribute (ld, entry, &ber);

attrtype != NULL;
attrtype=ldap_next_attribute (ld, entry, ber)) {
/* calls to ldap_get_values or ldap_get_values_len
* to parse the attribute values
*/
ldap_memfree (attrtype);

{

The ldap_next_attribute API returns a string that contains the name of the next type in the entry. This
string must be deallocated using ldap_memfree when its use is completed.

The ber parameter, as returned by ldap_next_attribute , is a pointer to a BerElement structure that was
allocated by ldap_first_attribute to keep track of the current position in the LDAP result. This pointer is
passed to ldap_next_attribute and is used to step through the entry’s attributes. This pointer is
deallocated by ldap_next_attribute when there are no more attributes (that is, when ldap_next_attribute
returns NULL). Otherwise, the caller is responsible for deallocating the BerElement structure pointed to by
ber when it is no longer needed by calling ldap_memfree .

Error conditions
If an error occurs for ldap_first_attribute and ldap_next_attribute , NULL is returned. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_count_attributes API returns -1 in case of an error. Use ldap_get_errno to retrieve the error
value. See “ldap_error” on page 42 for possible values.

Related topics
ldap_first_entry/reference
ldap_memfree
ldap_error
ldap_get_values

ldap_first_attribute

Chapter 2. LDAP routines 49

ldap_first_entry/reference
ldap_first_entry
ldap_next_entry
ldap_first_reference
ldap_next_reference
ldap_count_entries
ldap_count_references
ldap_get_entry_controls_np
ldap_parse_reference_np

Purpose
LDAP result entry and continuation reference parsing and counting APIs.

Format
#include <ldap.h>

LDAPMessage *ldap_first_entry(
LDAP *ld,
LDAPMessage *result)

LDAPMessage *ldap_next_entry(
LDAP *ld,
LDAPMessage *entry)

LDAPMessage *ldap_first_reference(
LDAP *ld,
LDAPMessage *result)

LDAPMessage *ldap_next_reference(
LDAP *ld,
LDAPMessage *ref,
LDAPMessage *entry)

int ldap_count_entries(
LDAP *ld,
LDAPMessage *result)

int ldap_count_references(
LDAP *ld,
LDAPMessage *result)

int ldap_get_entry_controls_np(
LDAP *ld,
LDAPMessage *entry
LDAPControl ***serverctrlsp)

int ldap_parse_reference_np(
LDAP *ld,
LDAPMessage *ref,
char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit)

ldap_first_entry/reference

50 z/OS V1R4.0 Security Server LDAP Client Programming

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

entry
Specifies a pointer to an entry returned on a previous call to ldap_first_entry or ldap_next_entry .

result
Specifies the result as returned by a call to ldap_result or to one the synchronous LDAP search
routines (see “ldap_search” on page 87).

ref Specifies a pointer to a search continuation reference returned on a previous call to
ldap_first_reference or ldap_next_reference .

freeit
Specifies a boolean value that determines if the LDAP result chain (as specified by ref) is to be freed.
Any nonzero value will result in the LDAP result chain being freed after the requested information is
extracted. Alternatively, the ldap_msgfree API can be used to free the LDAP result chain at a later
time.

Output

serverctrlsp
Specifies a pointer to a result parameter that is filled in with an allocated array of controls copied out
of the LDAPMessage message. The control array should be freed by calling ldap_controls_free .

referralsp
Specifies a pointer to a result parameter that is filled in with the contents of the referrals field from the
LDAPMessage message, indicating zero or more alternate LDAP servers where the request should be
retried. The referrals array should be freed by calling ldap_value_free . NULL may be supplied for this
parameter to ignore the referrals field.

Usage
These APIs are used to parse results received from ldap_result or the synchronous LDAP search
operation APIs.

Processing entries
The ldap_first_entry and ldap_next_entry APIs are used to step through and retrieve the list of entries
from a search result chain. When an LDAP operation completes and the result is obtained as described, a
list of LDAPMessage structures is returned. This is referred to as the search result chain. A pointer to the
first of these structures is returned by ldap_result and ldap_search_s .

The ldap_first_entry API parses results received from ldap_result or the synchronous LDAP search
operation routines and returns a pointer to the first entry in the result. If no entries were present in the
result, NULL is returned. This pointer should be supplied on a subsequent call to ldap_next_entry to get
the next entry, and so on until ldap_next_entry returns NULL. The ldap_next_entry API returns NULL
when there are no more entries.

The ldap_next_entry API is used to parse results received from ldap_result or the synchronous LDAP
search operation routines. The ldap_next_entry API returns NULL when there are no more entries.

The entry returned from ldap_first_entry and ldap_next_entry is used in calls to other parsing routines,
such as ldap_get_dn and ldap_first_attribute . Following is an example:
for (entry=ldap_first_entry (ld, result);

entry != NULL;
entry=ldap_next_entry (ld, entry)) {

ldap_first_entry/reference

Chapter 2. LDAP routines 51

/* calls to ldap_get_dn or ldap_first_attribute and
* other routines to use the entry
*/

{

The ldap_get_entry_controls_np API is used to retrieve an array of server controls returned in an
individual entry in a chain of search results.

Processing continuation references
The ldap_first_reference and ldap_next_reference APIs are used to step through and retrieve the list of
continuation references from a search result chain. They will return NULL when no more continuation
references exist in the result set to be returned.

The ldap_first_reference API is used to retrieve the first continuation reference in a chain of search
results. It takes the result as returned by a call to ldap_result or ldap_search_s , ldap_search_st , or
ldap_search_ext_s and returns a pointer to the continuation reference in the result.

The pointer returned from ldap_first_reference should be supplied on a subsequent call to
ldap_next_reference to get the next continuation reference.

The ldap_parse_reference_np API is used to retrieve the list of alternate servers returned in an individual
continuation reference in a chain of search results. This API is also used to obtain an array of server
controls returned in the continuation reference.

Counting entries and references
The ldap_count_entries API is used to parse results received from ldap_result or the synchronous LDAP
search operation routines in order to count the number of entries in the result. The number of entries in
the chain of search results is returned. It can also be used to count the number of entries that remain in a
chain if called with a message, entry, or continuation reference returned by ldap_first_message ,
ldap_next_message , ldap_first_entry , ldap_next_entry , ldap_first_reference , or ldap_next_reference ,
respectively.

The ldap_count_references API is used to count the number of continuation references returned. It can
also be used to count the number of continuation references that remain in a chain.

Error conditions
If an error occurs in ldap_first_entry , ldap_next_entry , ldap_first_reference , or ldap_next_reference ,
NULL is returned. Use ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for
possible values.

The ldap_count_entries or ldap_count_references APIs return -1 in case of error. Use ldap_get_errno
to retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_get_entry_controls_np and ldap_parse_reference_np APIs return LDAP_SUCCESS if
successful, otherwise an error code is returned. See “ldap_error” on page 42 for possible values.

Related topics
ldap_result
ldap_first_attribute
ldap_get_dn
ldap_search
ldap_get_values

ldap_first_entry/reference

52 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_get_dn
ldap_get_dn
ldap_explode_dn

Purpose
LDAP DN handling routines.

Format
#include <ldap.h>

char *ldap_get_dn(
LDAP *ld,
LDAPMessage *entry)

char **ldap_explode_dn(
char *dn,
int notypes)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

entry
Specifies attribute information as returned by ldap_first_entry or ldap_next_entry .

dn Specifies the distinguished name of the entry to be parsed.

notypes
Requests that only the relative distinguished name (RDN) values be returned, not their types. For
example, the DN cn=Bob, c=US would return as either {"cn=Bob", "c=US", NULL} or {"Bob", "US",
NULL} depending on whether notypes was 0 or 1, respectively.

Usage
The ldap_get_dn API takes an entry as returned by ldap_first_entry or ldap_next_entry , and returns a
copy of the entry’s DN. Space for the DN is obtained on the caller’s behalf and should be deallocated by
the caller using ldap_memfree .

The ldap_explode_dn API takes a DN as returned by ldap_get_dn and breaks it up into its component
parts. Each part is known as a relative distinguished name (RDN). The ldap_explode_dn API returns a
NULL-terminated array of character strings, each component of which contains an RDN from the DN. This
routine allocates memory that the caller must deallocate using ldap_value_free .

Error conditions
If an error occurs, NULL is returned. For the ldap_get_dn API, use ldap_get_errno to retrieve the error
value. See “ldap_error” on page 42 for possible values. For the ldap_explode_dn API, specific error
information is not available using ldap_get_errno . Possible errors are: NULL pointer passed into the
function, memory allocation error, or the string passed in was not parsable as a distinguished name.

Related topics
ldap_error
ldap_first_entry
ldap_value_free

ldap_get_dn

Chapter 2. LDAP routines 53

ldap_get_values
ldap_get_values
ldap_get_values_len
ldap_count_values
ldap_count_values_len
ldap_value_free
ldap_value_free_len

Purpose
LDAP attribute value handling APIs.

Format
#include <ldap.h>

typedef struct berval {
unsigned long bv_len;
char *bv_val;

};

char **ldap_get_values(
LDAP *ld,
LDAPMessage *entry,
char *attr)

struct berval **ldap_get_values_len(
LDAP *ld,
LDAPMessage *entry,
char *attr)

int ldap_count_values(
char **vals)

int ldap_count_values_len(
struct berval **bvals)

void ldap_value_free(
char **vals)

void ldap_value_free_len(
struct berval **bvals)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

entry
Specifies the LDAP entry from which to retrieve the attribute values.

attr
Specifies the attribute type to retrieve. It may be an attribute type as returned from
ldap_first_attribute or ldap_next_attribute , or if the attribute type is known it can simply be given.

Output

ldap_get_values

54 z/OS V1R4.0 Security Server LDAP Client Programming

vals
Specifies a pointer to a NULL-terminated array of attribute values returned by ldap_get_values .

bvals
Specifies a pointer to a NULL-terminated array of pointers to berval structures, as returned by
ldap_get_values_len .

Usage
These APIs retrieve and manipulate attribute values from an LDAP entry as returned by ldap_first_entry
or ldap_next_entry . The result of ldap_get_values is a NULL-terminated array of NULL-terminated
character strings that represent the attributes values. The ldap_get_values API converts the returned
results into a NULL-terminated string in the codeset of the current locale. The data is assumed to be
(UTF-8) coming from the LDAP server. If the data is binary data or conversions should be avoided then
the ldap_get_values_len API must be used.

The ldap_get_values API allocates memory that the caller must deallocate using ldap_value_free .

Use the ldap_get_values_len API if the attribute values are binary in nature and not suitable to be
returned as an array of NULL-terminated character strings. The ldap_get_values_len API returns a
NULL-terminated array of pointers to berval structures, each containing the length of and a pointer to a
value.

The ldap_get_values_len API allocates memory that the caller must deallocate using
ldap_value_free_len .

The ldap_count_values API counts values in an array of attribute values as returned by
ldap_get_values . The number of attribute values is returned.

The ldap_count_values_len API counts the number of values in a NULL-terminated array of pointers to
berval structures where each represents an attribute value. The number of attribute values is returned.

The ldap_value_free API deallocates an array of attribute values that was allocated by ldap_get_values .
Following is an example of its usage:
for (attrtype=ldap_first_attribute (ld, entry, &ber);

attrtype != NULL;
attrtype=ldap_next_attribute (ld, entry, ber)) {
char *values[];
values=ldap_get_values (ld, entry, attrtype);
/*
* work with the attribute type and values
*/
ldap_value_free(values);

} ldap_memfree(attrtype);

The ldap_value_free_len API deallocates an array of attribute values that was allocated by
ldap_get_values_len . Following is an example of its usage:
for (attrtype=ldap_first_attribute (ld, entry, &ber);

attrtype != NULL;
attrtype=ldap_next_attribute (ld, entry, ber)) {
struct berval *bvals[];
bvals=ldap_get_values_len (ld, entry, attrtype);
/*
* work with the attribute type and values
*/
ldap_value_free_len(bvals);
ldap_memfree(attrtype);

}

ldap_get_values

Chapter 2. LDAP routines 55

Error conditions
If no values are found or an error occurs in ldap_get_values or ldap_get_values_len , NULL is returned.
Use ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

Related topics
ldap_first_entry/reference
ldap_first_attribute
ldap_error

ldap_get_values

56 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_init
ldap_init
ldap_open (deprecated)
ldap_unbind
ldap_unbind_s
ldap_set_option
ldap_set_option_np (nonportable)
ldap_get_option

Purpose
Initialize the LDAP library, open a connection to an LDAP server, and get or set options for an LDAP
connection.

If you want to use the socksified client, see “Using the socksified client” on page 5.

Format
#include <ldap.h>

LDAP *ldap_init(
char *host,
int port)

LDAP *ldap_open(
char *host,
int port)

int ldap_unbind(
LDAP *ld)

int ldap_unbind_s(
LDAP *ld)

int ldap_set_option(
LDAP *ld,
int optionToSet,
void *optionValue)

int ldap_set_option_np(
LDAP *ld,
int optionToSet,
void *optionValue)

int ldap_get_option(
LDAP *ld,
int optionToGet,
void *optionValue)

Parameters
Input

host
Specifies the name of the host on which the LDAP server is running. It can contain a space-separated
list of hosts in which to try to connect, and each host may optionally be of the form host:port. If
present, :port overrides the port parameter to ldap_init or ldap_open .

ldap_init

Chapter 2. LDAP routines 57

Following are some examples:
myhost.mycompany.com
myhost.mycompany.com:389 yourhost.yourcompany.com

If host is NULL, the LDAP server is assumed to be running on the local host.

The host parameter can also be specified as a single LDAP URL. The format of the LDAP URL is:
ldap[s]://host[:port]/dn[?attributes[?scope[?filter]]]

where:

host Is an optional DNS-style host name.

port Is an optional port number.

dn Is the distinguished name.

The attributes, scope, and filter portions of the URL are ignored by this operation.

The port number specified in the URL overrides the ldap_init port parameter. If a port number is not
specified in the URL, the default port 389 is used (636 for the SSL “ldaps” URL format).

If the URL host name is omitted, ldap_init and ldap_open attempt to locate an LDAP server to
communicate with through an internal call to the ldap_server_locate function. In this case, the dn field
(if specified) is used as input to ldap_server_locate to narrow the scope of eligible LDAP servers.
See “ldap_server_locate usage by ldap_init, and ldap_ssl_init” on page 105 for details.

Note: Calling ldap_init or ldap_open using the SSL URL format (ldaps) is equivalent to calling the
ldap_ssl_init function with NULL specified as the ldap_ssl_init name parameter. See
“ldap_ssl” on page 107 for details, including SSL initialization requirements.

port
Specifies the TCP/IP port number in which to connect. If the default IANA-assigned port of 389 is
desired, LDAP_PORT should be specified. To use the default SSL port 636 for SSL connections, use
LDAPS_PORT .

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

optionToSet
Specifies which LDAP option’s value should be set. See “Setting and getting session settings” on
page 60 for the list of supported options.

optionToGet
Specifies which LDAP option’s value should be returned. See “Setting and getting session settings” on
page 60 for the list of supported options.

optionValue
Depending on the operation, protocol version, or both, optionValue specifies the value, or address of
the value, to be set through ldap_set_option or ldap_set_option_np . For ldap_get_option , it
specifies the address of the storage in which to return the queried value. The following table details
the format of the optionValue parameter to be specified.

Table 4. The optionValue parameter specifications

optionToSet or optionToGet ldap_set_option
(Version 3)

ldap_set_option
(Version 2)

ldap_set_option_np ldap_get_option

LDAP_OPT_SIZELIMIT int * int int int *

LDAP_OPT_TIMELIMIT int * int int int *

LDAP_OPT_REFHOPLIMIT int * int int int *

LDAP_OPT_DEREF int * int int int *

ldap_init

58 z/OS V1R4.0 Security Server LDAP Client Programming

Table 4. The optionValue parameter specifications (continued)

optionToSet or optionToGet ldap_set_option
(Version 3)

ldap_set_option
(Version 2)

ldap_set_option_np ldap_get_option

LDAP_OPT_RESTART int (ON/OFF) int (ON/OFF) int (ON/OFF) int *

LDAP_OPT_REFFERALS int (ON/OFF) int (ON/OFF) int (ON/OFF) int *

LDAP_OPT_DEBUG int * int int int

LDAP_OPT_DEBUG_STRING char * char * char * char **

LDAP_OPT_SSL_CIPHER char * char * char * char **

LDAP_OPT_SSL_TIMEOUT int * int int int *

LDAP_OPT_REBIND_FN LDAPRebindProc * LDAPRebindProc * LDAPRebindProc * LDAPRebindProc **

LDAP_OPT_PROTOCOL_VERSION int * int * int int *

LDAP_OPT_SERVER_CONTROLS LDAPControl ** N/A LDAPControl ** LDAPControl ***

LDAP_OPT_CLIENT_CONTROLS LDAPControl ** N/A LDAPControl ** LDAPControl ***

LDAP_OPT_DELEGATION int (ON/OFF) N/A int (ON/OFF) int *

LDAP_OPT_UTF8_IO int (ON/OFF) int (ON/OFF) int (ON/OFF) int *

LDAP_OPT_V2_WIRE_FORMAT int int int int *

LDAP_OPT_HOST_NAME n/a n/a n/a char **

LDAP_OPT_ERROR_NUMBER n/a n/a n/a int *

LDAP_OPT_ERROR_STRING n/a n/a n/a char **

LDAP_OPT_EXT_ERROR n/a n/a n/a int *

Note: The ON and OFF in the table refer to LDAP_OPT_ON and LDAP_OPT_OFF , respectively.

Usage
The ldap_init API initializes a session with an LDAP server. The server is not actually contacted until an
operation is preformed that requires it, allowing various options to be set after initialization, but before
actually contacting the host. It allocates an LDAP handle which is used to identify the connection and
maintain per-connection information.

TCP/IP can cause a SIGPIPE signal to be generated when a peer closes their connection unexpectedly. In
order for the TCP/IP function calls to be notified, the SIGPIPE signal should be ignored. This causes an
error return and EPIPE errno to be returned to the TCP/IP functions instead of creating the SIGPIPE
signal. The application should code the signal ignore prior to invoking the ldap_init API. An example of the
signal ignore call looks like:
sigignore(SIGPIPE);

For SSL/TLS, the equivalent of ldap_init is ldap_ssl_init . The ldap_ssl_init API is used to initialize a
secure session with a server. See “ldap_ssl” on page 107 for more information.

Although still supported, the use of ldap_open is deprecated. The ldap_open API allocates an LDAP
handle and opens a connection to the LDAP server. Use of ldap_init instead of ldap_open is
recommended.

For ldap_open , the ldap_ssl_start API starts a secure (SSL/TLS) connection to an LDAP server.

The ldap_init and ldap_open APIs return a handle that is passed to subsequent calls to ldap_bind ,
ldap_search , and so on.

The ldap_unbind API is used to unbind from the directory, terminate the current association, and
deallocate the resources associated with the LDAP handle. Once it is called, any open connection to the
LDAP server is closed and the LDAP handle is not valid. The ldap_unbind_s and ldap_unbind APIs are
both synchronous, either can be called.

ldap_init

Chapter 2. LDAP routines 59

|

|
|
|
|
|

|

The ldap_set_option and ldap_set_option_np APIs modify the current value of an option used by the
LDAP programming interface. These options take on default values after ldap_open or ldap_init is called
and their current value can be retrieved using the ldap_get_option API. On successful completion, the
current value of the requested option is set to the value specified by the optionValue parameter with the
return code set to LDAP_SUCCESS .

Environment variables affecting session settings
There are three environment variables that can affect the session settings. One, LDAP_DEBUG , is
discussed in “Tracing” on page 15. Setting the LDAP_DEBUG environment variable has the same effect
as calling ldap_set_option to set the LDAP_OPT_DEBUG_STRING session option.

The LDAP_VERSION environment variable can be used to establish the LDAP version to be used for a
session. Setting the LDAP_VERSION environment variable has the same effect as calling
ldap_set_option to set the LDAP_OPT_PROTOCOL_VERSION session option. Valid values for the
LDAP_VERSION environment variable are 2 and 3. See “LDAP_OPT_PROTOCOL_VERSION” on
page 65 for more information.

The LDAP_V2_WIRE_FORMAT environment variable can be used to establish the wire format to be used
for Version 2 data exchanged between the client library APIs and the target LDAP server. Setting the
LDAP_V2_WIRE_FORMAT environment variable has the same effect as calling ldap_set_option to set
the LDAP_OPT_V2_WIRE_FORMAT session option. Valid values for the LDAP_V2_WIRE_FORMAT
environment variable are UTF8 and ISO8859-1. See “LDAP_OPT_V2_WIRE_FORMAT” on page 67 for
more information.

Setting and getting session settings
The ldap_get_option , ldap_set_option , and ldap_set_option_np APIs can be used to:

v Get or set the maximum number of entries that can be returned on a search operation.
(LDAP_OPT_SIZELIMIT)

v Get or set the maximum number of seconds to wait for search results. (LDAP_OPT_TIMELIMIT)

v Get or set the maximum number of referrals in a sequence that the client can follow.
(LDAP_OPT_REFHOPLIMIT)

v Get or set the rules for following aliases at the server. (LDAP_OPT_DEREF)

v Get or set whether select system call should be restarted. (LDAP_OPT_RESTART)

v Get or set whether referrals should be followed by the client. (LDAP_OPT_REFERRALS)

v Get or set the debug options. (LDAP_OPT_DEBUG)

v Get or set the debug options as a character string (LDAP_OPT_DEBUG_STRING)

v Get or set the SSL ciphers to use. (LDAP_OPT_SSL_CIPHER)

v Get or set the SSL time-out for refreshing session keys. (LDAP_OPT_SSL_TIMEOUT)

v Get or set the address of application’s rebind procedure. (LDAP_OPT_REBIND_FN)

v Get or set the LDAP protocol version to use (Version 2 or Version 3).
(LDAP_OPT_PROTOCOL_VERSION)

v Get or set the default server controls. (LDAP_OPT_SERVER_CONTROLS)

v Get or set the default client library controls. (LDAP_OPT_CLIENT_CONTROLS)

v Get or set whether the client passes Kerberos Version 5 delegated credentials to the server.
(LDAP_OPT_DELEGATION)

v Get or set the format of textual data. (LDAP_OPT_UTF8_IO)

v Get or set the format of textual data when using V2 protocol. (LDAP_OPT_V2_WIRE_FORMAT)

v Get the current host name (cannot be set). (LDAP_OPT_HOST_NAME)

v Get the error number (cannot be set). (LDAP_OPT_ERROR_NUMBER)

v Get the error string (cannot be set). (LDAP_OPT_ERROR_STRING)

ldap_init

60 z/OS V1R4.0 Security Server LDAP Client Programming

|

|

If your LDAP application is based on the LDAP Version 2 APIs and uses the ldap_set_option or
ldap_get_option functions (that is, you are using ldap_open or your application uses ldap_init and
ldap_set_option to switch from the default of LDAP Version 3 to use the LDAP Version 2 protocol and
subsequently uses the ldap_set_option or ldap_get_option calls), see “ldap_set_option Syntax for LDAP
Version 2 Applications” on page 68 for important information.

For a description of the differences between the ldap_set_option API and the ldap_set_option_np
(nonportable) API, see “Comparing the ldap_set_option and ldap_set_option_np APIs” on page 68.

Additional details on specific options for ldap_get_option , ldap_set_option , and ldap_set_option_np are
provided in the following sections.

LDAP_OPT_SIZELIMIT
Specifies the maximum number of entries that can be returned on a search operation.

Note: The actual size limit for operations is also bounded by the maximum number of entries that the
server is configured to return. Thus, the actual size limit will be the lesser of the value specified on
this option and the value configured in the LDAP server. The default size limit is unlimited, specified
with a value of zero (thus deferring to the size limit setting of the LDAP server). A value of zero (the
default) means no limit

Examples:
int sizevalue=50;
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void *) &sizevalue); /*Version 3 protocol*/

or
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void *) sizevalue); /*Version 2 protocol*/

or
ldap_set_option_np(ld, LDAP_OPT_SIZELIMIT, (int) sizevalue);

ldap_get_option(ld, LDAP_OPT_SIZELIMIT, (void *) &sizevalue);

LDAP_OPT_TIMELIMIT
Specifies the number of seconds to wait for search results. Note that the actual time limit for operations is
also bounded by the maximum time that the server is configured to allow. Thus, the actual time limit will be
the lesser of the value specified on this option and the value configured in the LDAP server. The default is
unlimited (specified with a value of zero).

Examples:
int timevalue=50;
ldap_set_option(ld, LDAP_OPT_TIMELIMIT, (void *) &timevalue); /*Version 3 protocol*/

or
ldap_set_option(ld, LDAP_OPT_TIMELIMIT, (void *) timevalue); /*Version 2 protocol*/

or
ldap_set_option_np(ld, LDAP_OPT_TIMELIMIT, (int) timevalue);

ldap_get_option(ld, LDAP_OPT_TIMELIMIT, (void *) &timevalue);

LDAP_OPT_REHOPLIMIT
Specifies the maximum number of servers to contact when chasing referrals. For subtree searches, this is
the limit on the depth of nested search references, so the number of servers contacted might actually
exceed this value. The default is 10.

Examples:
int hoplimit=7;
ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, (void *) &hoplimit); /* Version 3 protocol */

or
ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, (void *) hoplimit); /* Version 2 protocol */

or

ldap_init

Chapter 2. LDAP routines 61

ldap_set_option_np(ld, LDAP_OPT_REFHOPLIMIT, (int) hoplimit);

ldap_get_option(ld, LDAP_OPT_REFHOPLIMIT, (void *) &hoplimit);

LDAP_OPT_DEREF
Specifies alternative rules for following aliases at the server. The default is LDAP_DEREF_NEVER .

Supported values:
v LDAP_DEREF_NEVER 0 (default)
v LDAP_DEREF_SEARCHING 1
v LDAP_DEREF_FINDING 2
v LDAP_DEREF_ALWAYS 3

The LDAP_DEREF_FINDING value means aliases should be dereferenced when locating the base object,
but not during a search.

Examples:
int deref = LDAP_DEREF_NEVER;
ldap_set_option(ld, LDAP_OPT_DEREF, (void *) &deref); /* Version 3 protocol */

or
ldap_set_option(ld, LDAP_OPT_DEREF, (void *) deref); /* Version 2 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_DEREF, (int) deref);

ldap_get_option(ld, LDAP_OPT_DEREF, (void *) &value);

LDAP_OPT_RESTART
Specifies whether the select system call should be restarted when it is interrupted by the system. The
returned value will be one of LDAP_OPT_ON or LDAP_OPT_OFF (default).

Examples:
int value;
ldap_set_option(ld, LDAP_OPT_RESTART, (void *) LDAP_OPT_ON); /* Version 2 or 3 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_RESTART, (int) LDAP_OPT_ON);

ldap_get_option(ld, LDAP_OPT_RESTART, (void *) &value);

LDAP_OPT_REFERRALS
Specifies whether the LDAP library will automatically follow referrals returned by LDAP servers. It can be
set to one of the constants LDAP_OPT_ON or LDAP_OPT_OFF . By default, the LDAP client will follow
referrals.

Examples:
int value:
ldap_set_option(ld, LDAP_OPT_REFFERALS, (void *) LDAP_OPT_ON); /* Version 2 or 3 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_REFFERALS, (int) LDAP_OPT_ON);

ldap_get_option(ld, LDAP_OPT_REFFERALS, (void *) &value);

LDAP_OPT_DEBUG
Specifies a bit map that indicates the level of debug trace for the LDAP library. The optionValue parameter
can be specified as either an integer greater than or equal to zero or as any bitwise “ored” (|) or “added”
(+) combination of the identifiers:
v LDAP_DEBUG_TRACE
v LDAP_DEBUG_PACKETS
v LDAP_DEBUG_ARGS
v LDAP_DEBUG_CONNS
v LDAP_DEBUG_BER

ldap_init

62 z/OS V1R4.0 Security Server LDAP Client Programming

v LDAP_DEBUG_FILTER
v LDAP_DEBUG_ACL
v LDAP_DEBUG_STATS
v LDAP_DEBUG_PARSE
v LDAP_DEBUG_CACHE

In addition, LDAP_DEBUG_OFF or LDAP_DEBUG_ANY are accepted.

LDAP_OPT_DEBUG is a global option (it does not pertain to any particular LDAP handle), whereas the
other options pertain to a specific LDAP handle. When setting either the LDAP_OPT_DEBUG or
LDAP_OPT_DEBUG_STRING options, the Id parameter can be specified as NULL. For example, you can
set the search time limit to 10 seconds for one server using one LDAP handle, but you could allow it to
default to 0 (no time limit) for a second server using a different LDAP handle. LDAP_OPT_DEBUG applies
to all allocated LDAP handles.

Examples:
int debugvalue= LDAP_DEBUG_TRACE + LDAP_DEBUG_PACKETS;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) &debugvalue); /* Version 3 protocol */

or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) debugvalue); /* Version 2 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) debugvalue);

ldap_get_option(ld, LDAP_OPT_DEBUG, (void *) &debugvalue);

Example turning all traces on:
int debugvalue=LDAP_DEBUG_ANY;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) &debugvalue); /* Version 3 protocol */

or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) LDAP_DEBUG_ANY); /* Version 2 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) LDAP_DEBUG_ANY);

Example turning all tracing off:
int debugvalue=LDAP_DEBUG_OFF;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) &debugvalue); /* Version 3 protocol */

or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) LDAP_DEBUG_OFF); /* Version 2 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) LDAP_DEBUG_OFF);

Example tracing just BER encodings and functional flow tracepoints:
int debugvalue=LDAP_DEBUG_BER + LDAP_DEBUG_TRACE;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) &debugvalue); /* Version 3 protocol */

or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) debugvalue); /* Version 2 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) debugvalue);

Example tracing packets and connections:
int debugvalue=LDAP_DEBUG_PACKETS | LDAP_DEBUG_CONNS;
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) &debugvalue); /* Version 3 protocol */

or
ldap_set_option(ld, LDAP_OPT_DEBUG, (void *) debugvalue); /* Version 2 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_DEBUG, (int) LDAP_DEBUG_PACKETS | LDAP_DEBUG_CONNS);

ldap_init

Chapter 2. LDAP routines 63

|
|

LDAP_OPT_DEBUG_STRING
Specifies the level of debug trace for the LDAP library as a character string.

The optionValue parameter is the address of a character string that specifies the debug level as a mask:

v A decimal value (for example, 32)

v A hexadecimal value (for example, x20 or X20)

v A keyword (for example, FILTER)

v A construct of those values using plus and minus signs to indicate inclusion or exclusion of a value. For
example:

– ’32768+8’ is the same as specifying ’32776’, or ’x8000+x8’, or ’ERROR+CONNS’

– ’2146959359’ is the same as specifying ’ANY-STRBUF’

– By beginning the debug level with a minus sign, you can deactivate debug collection for the various
types. -CONNS modifies an existing debug level by deactivating connection traces.

– By beginning the debug level with a plus sign, you can activate debug collection for the various
types. +CONNS modifies an existing debug level by activating connection traces.

The debug level may be set at a number of different times.

v The initial debug level is OFF.

v Prior to starting the client program, the LDAP_DEBUG environment variable may be set. The client API
uses this value first. For example:
export LDAP_DEBUG=’ERROR+TRACE’

v When set by ldap_set_option or ldap_set_option_np using the LDAP_OPT_DEBUG option. The
mask value specified with this option replaces the existing debug mask.

v When set by ldap_set_option or ldap_set_option_np using the LDAP_OPT_DEBUG_STRING option.
The mask value specified with this option replaces, or incrementally adds or deletes debug levels from
the current debug mask depending upon whether the mask value begins with a plus or minus sign.

LDAP_OPT_DEBUG_STRING is a global option (it does not pertain to any particular LDAP handle),
whereas the other options pertain to a specific LDAP handle. When setting either the LDAP_OPT_DEBUG
or LDAP_OPT_DEBUG_STRING options, the Id parameter can be specified as NULL.

If the debug level specified on the ldap_set_option or ldap_set_option_np function contains a debug
level that is not valid, the debug level will not be changed and an error message will be printed to the
STDERR. The debug level may be obtained as a character string. It is up to the caller of ldap_get_option
to free the storage when its usage is complete.

Examples:
char * resultingDebug;
char * addConnsBer = "+Conns+16";
/* Example of adding a debug level to the existing debug level */
ldap_set_option(ld, LDAP_OPT_DEBUG_STRING, addConnsBer);
ldap_get_option(ld, LDAP_OPT_DEBUG_STRING, &resultingDebug);
printf("New debug level: %s\n", resultingDebug);
ldap_memfree(resultingDebug);

LDAP_OPT_SSL_CIPHER
Specifies a set of one or more ciphers to be used when negotiating the cipher algorithm with the LDAP
server. The value for this option is specified as the v3cipher_specs value supplied to the
gsk_secure_soc_init function call in System SSL. Refer to z/OS: System Secure Sockets Layer
Programming for a description of supported cipher specifications and ordering their precedence. The
cipher is a concatenation of a set of strings. As a convenience, the following strings are defined in ldap.h .

Supported ciphers:
v LDAP_SSL_RC4_MD5_EX “03”

ldap_init

64 z/OS V1R4.0 Security Server LDAP Client Programming

|
|

|

|

|

|

|
|

|

|

|
|

|
|

|

|

|
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

v LDAP_SSL_RC2_MD5_EX “06”
v LDAP_SSL_RC4_SHA_US “05”
v LDAP_SSL_RC4_MD5_US “04”
v LDAP_SSL_DES_SHA_US “09”
v LDAP_SSL_DES_SHA_EX “09”
v LDAP_SSL_3DES_SHA_US “0A”
v LDAP_SSL_RSA_AES_128_SHA “2F”
v LDAP_SSL_RSA_AES_256_SHA “35”

Note: LDAP_SSL_DES_SHA_US has been deprecated. LDAP_SSL_DES_SHA_EX should be used
instead.

Examples:
char *cipher = "090A";
char *cipher2 = LDAP_SSL_3DES_SHA_US LDAP_SSL_DES_SHA_US;
ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, (void *) cipher); /* Version 2 or 3 protocol */

ldap_set_option_np(ld, LDAP_OPT_SSL_CIPHER, (char *) cipher2);

ldap_get_option(ld, LDAP_OPT_SSL_CIPHER, (void *) &cipher);

Note that ldap_get_option allocates storage for the returned cipher string. Use ldap_memfree to free this
storage.

LDAP_OPT_SSL_TIMEOUT
Specifies in seconds the SSL inactivity timer. After the specified seconds, in which no SSL activity has
occurred, the SSL connection will be refreshed with new session keys. A smaller value may help increase
security, but will have an impact on performance. The default SSL time-out value is 43200 seconds.

Examples:
int value = 100;
ldap_set_option(ld, LDAP_OPT_SSL_TIMEOUT, (void *) &value); /* Version 3 protocol */

or
ldap_set_option(ld, LDAP_OPT_SSL_TIMEOUT, (void *) value); /* Version 2 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_SSL_TIMEOUT, (int) value);

ldap_get_option(ld, LDAP_OPT_SSL_TIMEOUT, (void *) &value)

LDAP_OPT_REBIND_FN
Specifies the address of a routine to be called by the LDAP library when the need arises to authenticate a
connection with another LDAP server. This can occur, for example, when the LDAP library is chasing a
referral. If a routine is not defined, referrals will always be chased anonymously. A default routine is not
defined.

Examples:
extern LDAPRebindProc proc_address;
LDAPRebindProc value;
ldap_set_option(ld, LDAP_OPT_REBIND_FN, (void *) &proc_address); /* Version 2 or 3 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_REBIND_FN, (LDAPRebindProc *) &proc_address);

ldap_get_option(ld, LDAP_OPT_REBIND_FN, (void *) &value);

LDAP_OPT_PROTOCOL_VERSION
Specifies the LDAP protocol to be used by the LDAP client library when connecting to an LDAP server.
Also used to determine which LDAP protocol is being used for the connection. For an application that uses
ldap_init to create the LDAP connection the default value of this option will be LDAP_VERSION3 for
communicating with the LDAP server. The default value of this option will be LDAP_VERSION2 if the

ldap_init

Chapter 2. LDAP routines 65

|

|
|

|
|

application uses the deprecated ldap_open API. In either case, the LDAP_OPT_PROTOCOL_VERSION
option can be used with ldap_set_option to change the default. The LDAP protocol version should be
reset prior to issuing the bind (or any operation that causes an implicit bind).

Examples:
version2 = LDAP_VERSION2;
version3 = LDAP_VERSION3;
int value;
/* Example for Version 3 application setting version to version 2 with ldap_set_option */
ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, (void *) &version2);
/* Example of Version 2 application setting version to version 3 with ldap_set_option */
ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, (void *) &version3);
/* Example for Version 3 application setting version to version 2 with ldap_set_option_np */
ldap_set_option_np(ld, LDAP_OPT_PROTOCOL_VERSION, (int) LDAP_VERSION2);
/* Example of Version 2 application setting version to version 3 with ldap_set_option_np */
ldap_set_option_np(ld, LDAP_OPT_PROTOCOL_VERSION, (int) LDAP_VERSION3);

ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, (void *) &value);

LDAP_OPT_SERVER_CONTROLS
Specifies a default list of server controls to be sent with each request. The default list can be overridden
by specifying a server control, or list of server controls, on specific APIs. By default, there are no settings
for server controls. Controls are only applicable when using the Version 3 LDAP protocol.

Example:
LDAPControl ** ctrlArray;

.

.

.
ldap_set_option(ld, LDAP_OPT_SERVER_CONTROLS, (void *) &ctrlArray);

or
ldap_set_option_np(ld, LDAP_OPT_SERVER_CONTROLS, (LDAPControl **) ctrlArray);

ldap_get_option(ld, LDAP_OPT_SERVER_CONTROLS, (void *) &ctrlArray);

Note that ldap_get_option returns a pointer to an array of LDAPControl structures. Use
ldap_controls_free to free the storage allocated for this array.

LDAP_OPT_CLIENT_CONTROLS
Specifies a default list of client controls to be processed by the client library with each request. Since client
controls are not defined for this version of the library, the ldap_set_option and ldap_set_option_np APIs
can be used to define a set of default, noncritical client controls. If one or more client controls in the set is
critical, the entire list is rejected with a return code of LDAP_UNAVAILABLE_CRITICAL_EXTENSION .

LDAP_OPT_DELEGATION
Specifies whether the client passes Kerberos Version 5 delegated credentials to the LDAP server. Use this
option if you want to allow the server to use the client’s credentials for requests. Note that the server may
or may not support this capability. See the server documentation for the server you are contacting. The
z/OS LDAP Server does not support this capability.

The option can be set to one of the constants LDAP_OPT_ON or LDAP_OPT_OFF . By default, the option
is set to LDAP_OPT_OFF . This option is only valid if it is set prior to calling the ldap_sasl_bind_s API.

Examples:
int value;
ldap_set_option(ld, LDAP_OPT_DELEGATION, (void *) LDAP_OPT_ON); /* Version 2 or 3 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_DELEGATION, (int) LDAP_OPT_ON);

ldap_get_option(ld, LDAP_OPT_DELEGATION, (void *) &value);

ldap_init

66 z/OS V1R4.0 Security Server LDAP Client Programming

LDAP_OPT_UTF8_IO
Relative to the context LDAP handle, specifies the format of textual data exchanged (input/output) between
the calling application and the LDAP client library APIs. LDAP_OPT_ON indicates textual I/O is in the
UTF-8 codeset. LDAP_OPT_OFF indicates textual I/O is in the codeset of the current locale.
LDAP_OPT_OFF is the default.

Note: This setting is only applicable to LDAP operations that accept an LDAP handle as input. Other
LDAP operations (for example, ldap_init) require textual I/O to be in the codeset of the current
locale.

Examples:
int value;
ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *) LDAP_OPT_ON); /* Version 2 or 3 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_UTF8_IO, (int) LDAP_OPT_ON);

ldap_get_option(ld, LDAP_OPT_UTF8_IO, (void *) &value.);

LDAP_OPT_V2_WIRE_FORMAT
Relative to the context LDAP handle, specifies the format of textual data to be exchanged between the
LDAP client library APIs and the LDAP server being contacted when using the Version 2 protocol.
LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1 indicates that textual data is exchanged in ISO8859-1
format, which is the default for z/OS LDAP Version 2 servers. LDAP_OPT_V2_WIRE_FORMAT_UTF8
indicates that textual data is exchanged in UTF-8 format, which is the default for z/OS LDAP Version 3
servers. Also note that many non-z/OS LDAP Version 3 servers expect to exchange data in UTF-8 format,
regardless of the protocol version. LDAP_OPT_V2_WIRE_FORMAT_UTF8 is the default in z/OS and
OS/390 Release 8 and above.

Examples:
int value;
ldap_set_option(ld, LDAP_OPT_V2_WIRE_FORMAT, (void *) LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1); /* V2 or V3 protocol */

or
ldap_set_option_np(ld, LDAP_OPT_V2_WIRE_FORMAT, (int) LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1);

ldap_get_option (ld, LDAP_OPT_V2_WIRE_FORMAT, &value);

LDAP_OPT_HOST_NAME
This is a read-only option that returns a pointer to the host name for the original connection (as specified
on ldap_init , ldap_ssl_init , or ldap_open).

Example:
char * hostname;
ldap_get_option(ld, LDAP_OPT_HOST_NAME, (void *) &hostname);

Use ldap_memfree to free the memory allocated for the returned host name.

LDAP_OPT_ERROR_NUMBER
This is a read-only option that returns the error code associated with the most recent LDAP error that
occurred for the specified LDAP connection.

Example:
int error;
ldap_get_option(ld, LDAP_OPT_ERROR_NUMBER, (void *) &error);

LDAP_OPT_ERROR_STRING
This is a read-only option that returns the text message associated with the most recent LDAP error that
occurred for the specified LDAP connection.

Example:

ldap_init

Chapter 2. LDAP routines 67

char * error_string; ldap_get_option(ld, LDAP_OPT_ERROR_STRING, (void *) &error_string);

Use ldap_memfree to free the memory allocated for the returned error string.

LDAP_OPT_EXT_ERROR
This is a read-only option that returns the extended error code. For example, if an SSL error occurred
when attempting to invoke an ldap_search_s API, the actual SSL error can be obtained by using
LDAP_OPT_EXT_ERROR .

Example:
int exterror;
ldap_get_option(ld, LDAP_OPT_EXT_ERROR, (void *) &exterror);

Returns errors reported by the SSL library.

ldap_set_option Syntax for LDAP Version 2 Applications
To maintain compatibility with older versions of the LDAP client library (before LDAP Version 3), the
ldap_set_option API expects the value of the following option values to be supplied, instead of the
address of the value, when the application is running as an LDAP Version 2 application:
v LDAP_OPT_SIZELIMIT
v LDAP_OPT_TIMELIMIT
v LDAP_OPT_REFHOPLIMIT
v LDAP_OPT_SSL_TIMEOUT
v LDAP_OPT_DEREF
v LDAP_OPT_DEBUG

The LDAP application is typically running as LDAP Version 2 when it uses ldap_open to create the LDAP
connection. The LDAP application is typically running as LDAP Version 3 when it uses ldap_init to create
the LDAP connection. Note that LDAP_OPT_PROTOCOL_VERSION can be used to toggle the protocol,
in which case the behavior of ldap_set_option changes.

Comparing the ldap_set_option and ldap_set_option_np APIs
The ldap_set_option and ldap_set_option_np APIs support the same LDAP option value settings; they
differ only in the level of indirection required to specify certain settings. The ldap_set_option_np API is a
z/OS-specific API and its intent is to provide an alternate programming interface for setting LDAP option
values. Furthermore, the rules for specifying values through ldap_set_option_np will not be subject to
change in future releases. Unlike ldap_set_option , the ldap_set_option_np API expects the value of the
following option values to be supplied, instead of the address of the value, regardless of the LDAP version
setting:
v LDAP_OPT_SIZELIMIT
v LDAP_OPT_TIMELIMIT
v LDAP_OPT_REFHOPLIMIT
v LDAP_OPT_SSL_TIMEOUT
v LDAP_OPT_PROTOCOL_VERSION
v LDAP_OPT_DEREF
v LDAP_OPT_DEBUG

Error conditions
If an error occurs, the ldap_init and ldap_open APIs return NULL .

The ldap_unbind API returns -1 in case of an error initiating the request. Use ldap_get_errno to retrieve
the error value. See “ldap_error” on page 42 for possible values.

The ldap_unbind_s API returns LDAP_SUCCESS if successful, otherwise an error code is returned. See
“ldap_error” on page 42 for possible values.

ldap_init

68 z/OS V1R4.0 Security Server LDAP Client Programming

For ldap_get_option , and ldap_set_option , and ldap_set_option_np , LDAP_PARM_ERROR can be
returned if the LDAP handle is not valid or if the requested option is not one of the accepted values.

Related topics
ldap_bind
ldap_server

ldap_init

Chapter 2. LDAP routines 69

ldap_memcache
ldap_memcache_init
ldap_memcache_set
ldap_memcache_get
ldap_memcache_flush
ldap_memcache_update
ldap_memcache_destroy

Purpose
Support client-side caching of LDAP search results.

Format
#include <ldap.h>

int ldap_memcache_init(
unsigned long ttl,
unsigned long size,
char **baseDNs,
struct ldap_thread_fns *thread_fns,
LDAPMemCache **cachep)

int ldap_memcache_set(
LDAP *ld,
LDAPMemCache *cache)

int ldap_memcache_get(
LDAP *ld,
LDAPMemCache **cachep)

void ldap_memcache_flush(
LDAPMemCache *cache,
char *dn,
int scope)

void ldap_memcache_update(
LDAPMemCache *cache)

void ldap_memcache_destroy(
LDAPMemCache *cache)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

ttl Specifies the time limit (in seconds) that data will remain cached. Set to 0 for no time limit.

size
Specifies the size limit (in bytes) for the cache. Set to 0 for no size limit.

baseDNs
Specifies a list of search base distinguished names (DNs) for the specific search requests to be
cached. (See the description in “ldap_search” on page 87.) Specify NULL for all search requests to be
cached.

dn Specifies the base DN of a previously cached search request.

scope
Specifies the scope of a search request. The value can be LDAP_SCOPE_BASE ,
LDAP_SCOPE_ONELEVEL , or LDAP_SCOPE_SUBTREE .

thread_fns
Provided solely for prototype consistency with other SDKs. This parameter is ignored.

ldap_memcache

70 z/OS V1R4.0 Security Server LDAP Client Programming

cache
Specifies a cache handle pointer.

Output

cachep
Specifies the storage location to store a cache handle pointer.

Usage
The ldap_memcache_init function creates a client-side cache and associated cache handle
(LDAPMemCache). A pointer to the cache handle is stored at the address specified by the cachep output
parameter. To activate caching of search requests, the cache handle must be associated with one or more
LDAP handles through the cache parameter of ldap_memcache_set (to deactivate caching, specify NULL
for the cache parameter). Once a cache handle is assigned to one or more LDAP handles, search
requests issued over the associated LDAP handle or handles will be cached. Subsequent matching search
requests will be satisfied from the cache.

Below is the criteria used to determine if a search request matches a cached search request:

v Host name and port of the LDAP server being queried.

v Search request parameters (base, scope, filter, and so on). See “ldap_search” on page 87 for the
complete list of search parameters.

v Certain LDAP programming interface option values (See Table 4 on page 58 for details on these
settings):

– LDAP_OPT_REFERRALS . If set to LDAP_OPT_ON (the default), the settings for
LDAP_OPT_REFHOPLIMIT and LDAP_OPT_REBIND_FN settings are also compared.

– LDAP_OPT_PROTOCOL_VERSION

v Bind method and identity. (See “ldap_bind” on page 32.) Note that bind credentials are not stored in the
cache.

To explicitly remove expired search requests from the cache, use ldap_memcache_update . Note that this
function is periodically performed internally by the caching support itself.

Use ldap_memcache_flush to remove cached search requests whose search base DN is within the
scope identified by the combination of the search base DN (dn) and scope parameters. If the dn
parameter is NULL, the scope parameter is ignored and the entire cache is drained.

The ldap_memcache_destroy API frees all resources associated with a cache handle. After this API is
called, the cache handle is no longer valid.

To bypass cache usage for specific search requests, the ibm-serverHandledSearchRequest client control
can be specified. (See “Supported client controls” on page 25.)

To disable cache usage by a specific LDAP handle, use the ldap_memcache_set API specifying NULL for
the cache parameter.

Notes:

1. Caching should be disabled for an LDAP handle prior to calling ldap_unbind .

2. To trace client cache activity, enable debug level LDAP_DEBUG_CACHE .

Global cache support:

When activated, a global cache is a single client-side cache shared by all LDAP handles. A global cache is
activated by setting environment variables. Therefore, an application can make use of a global cache
without using the caching APIs described above. These environment variables are:

ldap_memcache

Chapter 2. LDAP routines 71

v LDAP_CLIENT_CACHE

– Set to ON to enable, OFF to disable.

v LDAP_CLIENT_CACHE_TTL

– Equivalent to the ttl parameter of ldap_memcache_init .

v LDAP_CLIENT_CACHE_MAX_SIZE

– Equivalent to the size parameter of ldap_memcache_init .

Global cache usage notes:

v Both LDAP_CLIENT_CACHE and LDAP_CLIENT_CACHE_TTL must be explicitly set in order for a
global cache to be enabled.

v The decision to create and activate a global cache is determined once as part of GLDCLDAP DLL
initialization. After this point, changes to these environment variables have no effect.

v An LDAP handle initialized to use a global cache can be modified to use a different cache using
ldap_memcache_set .

v All search requests issued against LDAP handles using a global cache are cached. Selective search
request filtering by search base is not possible (ldap_memcache_init provides this option).

v Calls to ldap_memcache_destroy against the global cache handle causes the global cache to be
drained; it does not invalidate the cache handle (the global cache is still usable).

Error conditions
The ldap_memcache_init , ldap_memcache_set and ldap_memcache_get APIs return
LDAP_SUCCESS if successful, otherwise an error code is returned. See “ldap_error” on page 42 for
possible values.

Related topics
ldap_search
ldap_bind

ldap_memcache

72 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_memfree
ldap_memfree
ldap_control_free
ldap_controls_free

Purpose
Free storage allocated by the LDAP library.

Format
#include <ldap.h>

void ldap_memfree(
char *mem)

void ldap_control_free(
LDAPControl *ctrl)

void ldap_controls_free(
LDAPControl **ctrls)

Parameters
Input

mem
Specifies the pointer to a character string that was previously allocated by the LDAP client library and
is no longer needed by the application.

ctrl
Specifies the address of an LDAPControl structure.

ctrls
Specifies the address of an LDAPControl list, represented as a NULL-terminated array of pointers to
LDAPControl structures.

Usage
In many of the LDAP programming interface calls, memory is allocated by the programming interface and
returned to the application. It is the responsibility of the application to deallocate this storage when the
storage is no longer needed by the application. Due to the possibility of the LDAP programming interface
and the application using different heaps for dynamic storage allocation, the ldap_memfree API is
provided for programs to use to deallocate storage that was allocated by the LDAP programming interface.
It should be used to deallocate all character strings that were allocated by the programming interface and
returned to the application.

For those LDAP APIs that allocate an LDAPControl structure, the ldap_control_free API can be used.

For those LDAP APIs that allocate an array of LDAPControl structures, the ldap_controls_free API can
be used.

ldap_memfree

Chapter 2. LDAP routines 73

ldap_message
ldap_first_message
ldap_next_message
ldap_count_messages

Purpose
Step through the list of messages of a result chain, as returned by ldap_result .

Format
#include <ldap.h>

LDAPMessage *ldap_first_message(
LDAP *ld,
LDAPMessage *result)

LDAPMessage *ldap_next_message(
LDAP *ld,
LDAPMessage *msg)

int ldap_count_messages(
LDAP *ld,
LDAPMessage *result)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

result
Specifies the result returned by a call to ldap_result or one of the synchronous search routines (see
“ldap_search” on page 87).

msg
Specifies the message returned by a previous call to ldap_first_message or ldap_next_message .

Usage
These routines are used to step through the list of messages in a result chain, as returned by ldap_result .
For search operations, the result chain may actually include:
v Continuation reference messages
v Entry messages
v A single result message

The ldap_count_messages API is used to count the number of messages returned. The ldap_msgtype
API can be used to distinguish between the different message types. Unlike ldap_first_entry ,
ldap_first_message will return either of the three types of messages. The other routines will return the
specific type (referral or entry), skipping the others.

The ldap_first_message and ldap_next_message APIs will return NULL when no more messages exist
in the result set to be returned. NULL is also returned if an error occurs while stepping through the entries.
When such an error occurs, ldap_errno can be used to obtain the error code.

In addition to returning the number of messages contained in a chain of results, the
ldap_count_messages API can be used to count the number of messages that remain in a chain if called
with a message, entry, or reference returned by ldap_first_message , ldap_next_message ,
ldap_first_entry , ldap_next_entry , ldap_first_reference and ldap_next_reference .

ldap_message

74 z/OS V1R4.0 Security Server LDAP Client Programming

Error conditions
If an error occurs in ldap_first_message or ldap_next_message , the ldap_get_errno API can be used
to obtain the error code.

If an error occurs in ldap_count_messages , -1 is returned, and ldap_get_errno can be used to obtain
the error code. See “ldap_error” on page 42 for a description of possible error codes.

Related topics
ldap_result

ldap_message

Chapter 2. LDAP routines 75

ldap_modify
ldap_modify
ldap_modify_ext
ldap_modify_s
ldap_modify_ext_s
ldap_mods_free

Purpose
Perform various LDAP modify operations.

Format
#include <ldap.h>

typedef struct ldapmod {
int mod_op;
char *mod_type;
union {

char **modv_strvals;
struct berval **modv_bvals;

} mod_vals;
struct ldapmod *mod_next;

} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify(
LDAP *ld,
char *dn,
LDAPMod *mods[])

int ldap_modify_ext(
LDAP *ld,
char *dn,
LDAPMod *mods[],
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_modify_s(
LDAP *ld,
char *dn,
LDAPMod *mods[])

int ldap_modify_ext_s(
LDAP *ld,
char *dn,
LDAPMod *mods[],
LDAPControl **serverctrls,
LDAPControl **clientctrls)

void ldap_mods_free(
LDAPMod **mods,
int freemods)

ldap_modify

76 z/OS V1R4.0 Security Server LDAP Client Programming

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

dn Specifies the distinguished name (DN) of the entry to be modified.

mods
A NULL-terminated array of modifications to make to the entry. Each element of the mods array is a
pointer to an LDAPMod structure.

The mod_op field is used to specify the type of modification to perform and should be one of
LDAP_MOD_ADD , LDAP_MOD_DELETE , or LDAP_MOD_REPLACE . The mod_type and
mod_values fields specify the attribute type to modify and a NULL-terminated array of values to add,
delete, or replace respectively. The mod_next field is used only by the LDAP library and should be
ignored by the client.

If you need to specify a non-NULL-terminated character string value (for example, to add a photo or
audio attribute value), you should set mod_op to the logical OR of the operation as above (for
example, LDAP_MOD_REPLACE) and the constant LDAP_MOD_BVALUES . In this case,
mod_bvalues should be used instead of mod_values, and it should point to a NULL-terminated array
of berval structures, as defined in the lber.h header file and described in “ldap_get_values” on
page 54.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the attribute if
necessary. For LDAP_MOD_DELETE modifications, the given values are deleted from the entry,
removing the attribute if no values remain. If the entire attribute is to be deleted, the mod_values field
should be set to NULL. For LDAP_MOD_REPLACE modifications, the attribute will have the listed
values after the modification, having been created if necessary, and deleting any existing values not in
the supplied set. All modifications are performed in the order in which they are listed.

freemods
Specifies whether to deallocate the mods pointer. If freemods is nonzero, the mods pointer itself is
deallocated as well.

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter may be set to NULL. See “Supported client
controls” on page 25 for more information about client controls.

Output

msgidp
This result parameter is set to the message ID of the request if the ldap_modify_ext API succeeds.

Usage
The various modify APIs are used to perform an LDAP modify operation.

The ldap_modify_ext API initiates an asynchronous modify operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_modify_ext places the message ID of the request in msgidp. A subsequent call to ldap_result can
be used to obtain the result of the operation. The ldap_parse_result API is used to extract information
from the result, including any error information.

The ldap_modify API initiates an asynchronous modify operation and returns the message ID of the
request it initiated. The result of this operation can be obtained by calling ldap_result , and result
information can be extracted by calling ldap_parse_result .

ldap_modify

Chapter 2. LDAP routines 77

For ldap_modify and ldap_modify_s , when data is supplied in a NULL-terminated character string, it is
assumed to be data in the codeset of the current locale. This data will be converted to UTF-8 prior to
being passed to the LDAP server. No conversions are performed on values supplied in pointer/length
format (that is, those values specified in berval structures and when LDAP_MOD_BVALUES is specified).
All four of the LDAP modify APIs support session controls set by the ldap_set_option API. The
ldap_modify_ext and ldap_modify_ext_s APIs both allow LDAP Version 3 server controls and client
controls to be specified with the request which overrides the session controls.

Depending on how the NULL-terminated array of LDAPMod structures was allocated by the application,
the ldap_mods_free API may or may not be useful. This API is offered as a convenience function for
cleaning up previously allocated storage. When invoked, each pointer in the NULL-terminated array is
deallocated and then, if freemods is nonzero, the mods pointer is also deallocated.

Error conditions
The ldap_modify_s and ldap_modify_ext_s APIs return LDAP_SUCCESS if successful, otherwise an
error code is returned. See “ldap_error” on page 42 for possible values.

The ldap_modify and ldap_modify_ext APIs return -1 in case of an error initiating the request. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

If the LDAP server is running with an SDBM database, the ldap_modify APIs can return LDAP_OTHER
and have completed a partial update to an entry in RACF. The results will match what would occur if the
update were done using the RACF altuser command. If several RACF attributes are being updated and
one of them is in error, RACF reports on the error, but still updates the other attributes. The RACF
message text is also returned in the result.

Related topics
ldap_add
ldap_error

ldap_modify

78 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_parse_result
ldap_parse_result
ldap_parse_sasl_bind_result
ldap_parse_extended_result

Purpose
LDAP APIs for extracting information from results returned by other LDAP API routines.

Format
#include <ldap.h>

int ldap_parse_result(
LDAP *ld,
LDAPMessage *res,
int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***servctrlsp,
int freeit)

int ldap_parse_sasl_bind_result(
LDAP *ld,
LDAPMessage *res,
struct berval **servercredp,
int freeit)

int ldap_parse_extended_result(
LDAP *ld,
LDAPMessage *res,
char **resultoidp,
struct berval **resultdatap,
int freeit)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

res
Specifies the result of an LDAP operation as returned by ldap_result or one of the synchronous LDAP
API operation calls.

freeit
Specifies a boolean value that determines if the LDAP result (as specified by res) is to be freed. Any
nonzero value will result in res being freed after the requested information is extracted. Alternatively,
the ldap_msgfree API can be used to free the result at a later time.

Output

errcodep
Specifies a pointer to the result parameter that will be filled in with the LDAP error code field from the
LDAPMessage message. The LDAPResult message is produced by the LDAP server, and indicates
the outcome of the operation. NULL can be specified for errcodep if the LDAPResult message is to
be ignored.

matcheddnp
Specifies a pointer to a result parameter. When LDAP_NO_SUCH_OBJECT is returned as the LDAP

ldap_parse_result

Chapter 2. LDAP routines 79

error code, this result parameter will be filled in with a distinguished name (DN) indicating how much
of the name in the request was recognized by the server. NULL can be specified for matcheddnp if the
matched DN is to be ignored. The matched DN string should be freed by calling ldap_memfree .

errmsgp
Specifies a pointer to a result parameter that is filled in with the contents of the error message from
the LDAPMessage message. The error message string should be freed by calling ldap_memfree .
NULL can be specified for errmsgp if the error message is to be ignored.

referralsp
Specifies a pointer to a result parameter that is filled in with the contents of the referrals field from the
LDAPMessage message, indicating zero or more alternate LDAP servers where the request should be
retried. The referrals array should be freed by calling ldap_value_free . NULL may be supplied for this
parameter to ignore the referrals field.

resultoidp
Specifies a pointer to an allocated, dotted-OID text string returned from the server. Free this string
using the ldap_memfree API. If no OID is returned, *resultoidp is set to NULL.

resultdatap
Specifies a pointer to a berval structure pointer that is set to an allocated copy of the data returned by
the server. Free this struct berval using the code supplied in the Notes below. If no data is returned,
*resultdatap is set to NULL.

serverctrlsp
Specifies a pointer to a result parameter that is filled in with an allocated array of controls copied out
of the LDAPMessage message. The control array should be freed by calling ldap_controls_free .

servercredp
Specifies a pointer to a result parameter. For SASL bind results, this result parameter will be filled in
with the credentials returned by the server for mutual authentication (if returned). The credentials, if
returned, are returned in a berval structure. NULL may be supplied to ignore this field.

Usage
The ldap_parse_result API is used to:
v Obtain the LDAP error code field associated with an LDAPMessage message.
v Obtain the portion of the DN that the server recognizes for a failed operation.
v Obtain the text error message associated with the error code returned in an LDAPMessage message.
v Obtain the list of alternate servers from the referrals field.
v Obtain the array of controls that may be returned by the server.

The ldap_parse_sasl_bind_result API is used to obtain server credentials, as a result of an attempt to
perform mutual authentication.

The ldap_parse_result , ldap_parse_extended_result , and ldap_parse_sasl_bind_result APIs ignore
messages of type LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE when looking
for a result message to parse. They return LDAP_SUCCESS if the result was successfully located and
parsed, and an LDAP error code if not successfully parsed.

The ldap_err2string API is used to convert the numeric LDAP error code, as returned by any of the LDAP
APIs, into a NULL-terminated character string that describes the error. The character string is returned as
static data and must not be freed by the application.

Notes
These routines allocate storage. Use ldap_memfree to free the returned OID. Use the following code to
free the returned struct berval:

ldap_parse_result

80 z/OS V1R4.0 Security Server LDAP Client Programming

|

if (retdatap != NULL) {
if (retdatap->bv_val != NULL) {

ldap_memfree(retdatap->bv_val);
}
ldap_memfree((char *)retdatap);

}

Error conditions
The parse APIs return an LDAP error code if they encounter an error parsing the result. See “ldap_error”
on page 42 for possible values.

Related topics
ldap_error
ldap_result

ldap_parse_result

Chapter 2. LDAP routines 81

ldap_rename
ldap_rename
ldap_rename_s
ldap_modrdn (deprecated)
ldap_modrdn_s (deprecated)

Purpose
Perform an LDAP rename operation.

Format
#include <ldap.h>

int ldap_rename(
LDAP *ld,
char *dn,
char *newrdn,
char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp)

int ldap_rename_s(
LDAP *ld,
char *dn,
char *newrdn,
char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls)

int ldap_modrdn(
LDAP *ld,
char *dn,
char *newrdn,
int deleteoldrdn)

int ldap_modrdn_s(
LDAP *ld,
char *dn,
char *newrdn,
int deleteoldrdn)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

dn Specifies the distinguished name (DN) of the entry whose DN is to be changed. When specified with
the deprecated ldap_modrdn and ldap_modrdn_s APIs, dn specifies the distinguished name (DN) of
the entry whose relative distinguished name (RDN) is to be changed.

newrdn
Specifies the new RDN to give the entry.

newparent
Specifies the new parent, or superior entry. If this parameter is NULL, only the RDN of the entry is

ldap_rename

82 z/OS V1R4.0 Security Server LDAP Client Programming

changed. The root DN may be specified by passing a zero-length string, "". The newparent parameter
should always be NULL when using Version 2 of the LDAP protocol; otherwise the server’s behavior is
undefined.

deleteoldrdn
If nonzero, this indicates that the old RDN value should be deleted from the entry. If zero, the attribute
value is retained in the entry. With respect to the ldap_rename and ldap_rename_s APIs, this
parameter only has meaning if newrdn is different from the old RDN.

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter may be set to NULL. See “Supported client
controls” on page 25 for more information about client controls.

Output

msgidp
This result parameter is set to the message ID of the request if the ldap_rename API succeeds.

Usage
In LDAP Version 2, the ldap_modrdn and ldap_modrdn_s APIs were used to change the name of an
LDAP entry. They could only be used to change the least significant component of a name (the RDN or
relative distinguished name). LDAP Version 3 provides the Modify DN protocol operation that allows more
general name change access. The ldap_rename and ldap_rename_s APIs are used to change the name
of an entry or to move a subtree of entries to a new location in the directory, and the use of the
ldap_modrdn and ldap_modrdn_s APIs is deprecated.

The ldap_rename API initiates an asynchronous modify DN operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_rename places the message ID of the request in msgidp. A subsequent call to ldap_result can be
used to obtain the result of the operation. The ldap_parse_result API is used to extract information from
the result, including any error information.

The synchronous ldap_rename_s API returns the result of the operation, either the constant
LDAP_SUCCESS if the operation was successful, or another LDAP error code if it was not.

The LDAP rename APIs support session controls set by the ldap_set_option API.

The ldap_modrdn and ldap_modrdn_s APIs perform an LDAP modify RDN operation. They both change
the lowest level RDN of an entry. When the RDN of the entry is changed, the value of the old RDN can be
retained as an attribute type and value in the entry if desired. This is for keeping the entry inside the set of
entries that match search filters which reference the attribute type of the RDN. The ldap_modrdn API
returns the message ID of the request it initiated. The result of this operation can be obtained by calling
ldap_result .

Error conditions
The ldap_rename and ldap_modrdn APIs return -1 in case of an error initiating the request. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_rename_s and ldap_modrdn_s APIs return LDAP_SUCCESS if successful, otherwise an error
code is returned. See “ldap_error” on page 42 for possible values.

ldap_rename

Chapter 2. LDAP routines 83

Related topics
ldap_error
ldap_result

ldap_rename

84 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_result
ldap_result
ldap_msgfree
ldap_msgtype
ldap_msgid

Purpose
Wait for the result of an asynchronous LDAP operation, free the results of an operation (synchronous and
asynchronous), obtain LDAP message types, and obtain the message ID of an LDAP message.

Format
#include <sys/time.h> /* for struct timeval definition */
#include <ldap.h>

int ldap_result(
LDAP *ld,
int msgid,
int all,
struct timeval *timeout,
LDAPMessage **result)

int ldap_msgfree(
LDAPMessage *msg)

int ldap_msgtype(
LDAPMessage *msg)

int ldap_msgid(
LDAPMessage *msg)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

msgid
Contains an invocation identifier returned when an operation was initiated. Provide the msgid if the
result of a specific operation is required, otherwise supply LDAP_RES_ANY .

all For search responses, selects whether a single entry of the search should be returned or all results of
the search should be returned.

A search response is made up of zero or more search entries followed by a search result. If all is set
to LDAP_MSG_ONE , search entries will be returned one at a time as they come in, through separate
calls to ldap_result . If all is set to LDAP_MSG_ALL , the search response will only be returned in its
entirety, that is, after all entries and the final search result have been received.

timeout
Specifies blocking for ldap_result . If timeout is not NULL , it specifies a maximum interval to wait for
the selection to complete. If timeout is NULL , the select blocks indefinitely until the result for the
operation identified by the msgid is received. To poll, the timeout parameter should be non-null,
pointing to a zero-valued timeval structure.

msg
Pointer to a result or entry returned from ldap_result or from one of the synchronous LDAP search
routines (see “ldap_search” on page 87).

Output

ldap_result

Chapter 2. LDAP routines 85

|
|
|
|

result
Contains the result of the asynchronous operation identified by msgid. This result should be passed to
the LDAP parsing routines. See “ldap_first_entry/reference” on page 50.

The type of the result is returned in the return code. The possible result types returned are:
v LDAP_RES_BIND
v LDAP_RES_SEARCH_ENTRY
v LDAP_RES_SEARCH_RESULT
v LDAP_RES_MODIFY
v LDAP_RES_ADD
v LDAP_RES_DELETE
v LDAP_RES_MODRDN
v LDAP_RES_COMPARE
v LDAP_RES_SEARCH_REFERENCE
v LDAP_RES_EXTENDED
v LDAP_RES_ANY

Usage
The ldap_result API is used to wait for and return the result of an operation previously initiated by one of
the LDAP asynchronous operation routines (for example, ldap_search and ldap_modify). Those routines
return an invocation identifier upon successful initiation of the operation or -1 in case of an error. The
invocation identifier is picked by the library and is guaranteed to be unique between calls to
ldap_simple_bind and ldap_unbind , or ldap_unbind_s . This identifier can be used to request the result
of a specific operation from ldap_result using the msgid parameter.

The ldap_result API allocates memory for results that it receives. The memory can be deallocated by
calling ldap_msgfree .

The ldap_msgfree API is used to deallocate the memory allocated for a result by ldap_result or the
synchronous LDAP search operation routines (for example, ldap_search_s and ldap_url_search_s). It
takes a pointer to the result to be deallocated and returns the type of the message it deallocated.

The ldap_msgtype API returns the type of LDAP message, based on the LDAP message passed as input
(through the msg parameter).

The ldap_msgid API returns the message ID associated with the LDAP message passed as input
(through the msg parameter).

Error conditions
The ldap_result API returns -1 if an error occurs. Use ldap_get_errno to retrieve the error value. Zero is
returned if the timeout specified was exceeded. In either of these cases, the result value is meaningless.

Related topics
ldap_search

ldap_result

86 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_search
ldap_search
ldap_search_s
ldap_search_ext
ldap_search_ext_s
ldap_search_st

Purpose
Perform various LDAP search operations.

Format
#include <sys/time.h> /* for struct timeval definition */
#include <ldap.h>
int ldap_search(

LDAP *ld,
char *base,
int scope,
char *filter,
char *attrs[],
int attrsonly)

int ldap_search_s(
LDAP *ld,
char *base,
int scope,
char *filter,
char *attrs[],
int attrsonly,
LDAPMessage **res)

int ldap_search_ext(
LDAP *ld,
char *base,
int scope,
char *filter,
char *attrs[],
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
int *msgidp)

int ldap_search_ext_s(
LDAP *ld,
char *base,
int scope,
char *filter,
char *attrs[],
int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeout,
int sizelimit,
LDAPMessage **res)

int ldap_search_st(
LDAP *ld,
char *base,
int scope,
char *filter,

ldap_search

Chapter 2. LDAP routines 87

char *attrs[],
int attrsonly,
struct timeval *timeout,
LDAPMessage **res)

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

base
Specifies the distinguished name of the entry at which to start the search. It should be in the text
format described by IETF RFC 1779 A String Representation of Distinguished Names. Following is an
example:
cn=Jane Doe, o=Your Company, c=US

scope
Specifies the scope of the search and must be one of the following:
v LDAP_SCOPE_BASE to search the entry named by base itself
v LDAP_SCOPE_ONELEVEL to search the entry’s immediate children
v LDAP_SCOPE_SUBTREE to search the entry and all its descendents

filter
A string representation of the filter to apply in the search. Simple filters can be specified as
attributetype=attributevalue. More complex filters are specified using a prefix notation according to the
following BNF:

<filter> ::= ’(’ <filtercomp> ’)’
<filtercomp> ::= <and> ; <or> ; <not> ; <simple>
<and> ::= ’&’ <filterlist>
<or> ::= ’|’ <filterlist>
<not> ::= ’!’ <filter>
<filterlist> ::= <filter> ; <filter> <filterlist>
<simple> ::= <attributetype> <filtertype> <attributevalue>
<filtertype> ::= ’=’ ; ’~=’ ; ’<=’ ; ’>=’

Note: Use of the approximate filter (~=) is not supported on a z/OS LDAP server.

The ’~=’ construct is used to specify approximate matching. The representation for <attributetype> and
<attributevalue> are as described in IETF RFC 1778, The String Representation of Standard Attribute
Syntaxes. In addition, <attributevalue> can be a single asterisk (*) to achieve an attribute existence
test, or can contain text and asterisks (*) interspersed to achieve substring matching.

For example, the filter
mail=*

finds any entries that have a mail attribute. The filter
mail=*@student.of.life.edu

finds any entries that have a mail attribute ending in the specified string. To put parentheses in a filter,
escape them with a backslash (\) character. See IETF RFC 1558 A String Representation of LDAP
Search Filters for a more complete description of allowable filters.

A more complicated example is:
(&(cn=Jane*)(sn=Doe))

attrs
Specifies a NULL-terminated array of character string attribute types to return from entries that match
filter. If NULL is specified, all attributes are returned.

ldap_search

88 z/OS V1R4.0 Security Server LDAP Client Programming

|

http://www.ietf.org/rfc/rfc1779.txt
http://www.ietf.org/rfc/rfc1778.txt
http://www.ietf.org/rfc/rfc1778.txt
http://www.ietf.org/rfc/rfc1558.txt
http://www.ietf.org/rfc/rfc1558.txt

attrsonly
Specifies attribute information. If nonzero, only attribute types are returned. If zero, both attribute types
and attribute values are returned.

timeout
Specifies blocking for ldap_search_st . If timeout is not NULL , it specifies a maximum interval to wait
for the selection to complete. If timeout is NULL , the select blocks indefinitely until the result for the
operation identified by the msgid is received. To poll, the timeout parameter should be non-null,
pointing to a zero-valued timeval structure.

For the ldap_search_ext and ldap_search_ext_s APIs, this function specifies both the local search
timeout value and the operation time limit that is sent to the server within the search request.

serverctrls
Specifies a list of LDAP server controls. This parameter may be set to NULL. See “LDAP controls” on
page 24 for more information about server controls.

clientctrls
Specifies a list of LDAP client controls. This parameter may be set to NULL. See “Supported client
controls” on page 25 for more information about client controls.

sizelimit
Specifies the maximum number of entries to return from the search. Note that the server may set a
lower limit which is enforced at the server.

Output

res
Specifies the result of an LDAP operation as returned by ldap_result or one of the synchronous LDAP
API operation calls.

msgidp
This result parameter is set to the message ID of the request if the ldap_modify_ext API succeeds.

Usage
The ldap_search_ext API initiates an asynchronous search operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_search_ext places the message ID of the request in *msgidp. A subsequent call to ldap_result can
be used to obtain the results from the search. The ldap_parse_result API is used to extract information
from the result, including any error information. In addition, use ldap_first_entry , ldap_next_entry ,
ldap_first_attribute , ldap_next_attribute , ldap_get_values , and ldap_get_values_len to examine
results from a search.

Similar to ldap_search_ext , the ldap_search API initiates an asynchronous search operation and returns
the message ID of the operation it initiated. The result of this operation can be obtained by calling
ldap_result , and result information can be extracted by calling ldap_parse_result .

The ldap_search_s API does a synchronous search (that is, not returning until the operation completes).

The ldap_search_st API does a synchronous search allowing the specification of a maximum time to wait
for results. The API returns when results are complete or after the timeout has passed, whichever is
sooner.

All five of the LDAP search APIs support session controls set by the ldap_set_option API. The
ldap_search_ext and ldap_search_ext_s APIs both allow LDAP Version 3 server controls and client
controls to be specified with the request which overrides the session controls.

ldap_search

Chapter 2. LDAP routines 89

For ldap_search , ldap_search_s , and ldap_search_st , note that both read and list functionality are
subsumed by these APIs. Use a filter like objectclass=* and a scope of LDAP_SCOPE_BASE to emulate
read or LDAP_SCOPE_ONELEVEL to emulate list.

The ldap_search_ext_s , ldap_search_s , and ldap_search_st APIs allocate storage returned by the res
parameter. Use ldap_msgfree to deallocate this storage.

There are three options in the session handle ld which potentially affect how the search is performed.
They are:

LDAP_OPT_SIZELIMIT
A limit on the number of entries to return from the search. A value of zero means no limit. Note
that the value from the session handle is ignored when using the ldap_search_ext or
ldap_search_ext_s functions.

LDAP_OPT_TIMELIMIT
A limit on the number of seconds to spend on the search. A value of zero means no limit. Note
that the value from the session handle is ignored when using the ldap_search_ext or
ldap_search_ext_s APIs.

LDAP_OPT_DEREF
One of LDAP_DEREF_NEVER (0x00), LDAP_DEREF_SEARCHING , (0x01),
LDAP_DEREF_FINDING (0x02), or LDAP_DEREF_ALWAYS (0x03), specifying how aliases
should be handled during the search. The LDAP_DEREF_SEARCHING value means aliases
should be dereferenced during the search but not when locating the base object of the search.
The LDAP_DEREF_FINDING value means aliases should be dereferenced when locating the
base object but not during the search.

These options are set and queried using the ldap_set_option and ldap_get_option APIs, respectively.

Reading an entry
LDAP does not support a read operation directly. Instead, this operation is emulated by a search with base
set to the DN of the entry to read, scope set to LDAP_SCOPE_BASE , and filter set to (objectclass=*).
The attrs parameter optionally contains the list of attributes to return.

Listing the children of an entry
LDAP does not support a list operation directly. Instead, this operation is emulated by a search with base
set to the DN of the entry to list, scope set to LDAP_SCOPE_ONELEVEL , and filter set to
(objectclass=*). The attrs parameter optionally contains the list of attributes to return for each child entry.
If only the distinguished names of child entries are desired, the attrs parameter should specify a
NULL-terminated array of one character string which has the value dn.

Caching search results
Search results caching is supported. It can be enabled for specific LDAP connections using the
ldap_memcache APIs, or globally for all connections by setting environment variables. See
“ldap_memcache” on page 70 for details.

Error conditions
The ldap_search and ldap_search_ext APIs return -1 in case of an error initiating the request. Use
ldap_get_errno to retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_search_s , ldap_search_ext_s , and ldap_search_st APIs return LDAP_SUCCESS if
successful, otherwise an error code is returned. See “ldap_error” on page 42 for possible values.

ldap_search

90 z/OS V1R4.0 Security Server LDAP Client Programming

Related topics
ldap_result
ldap_error
ldap_memcache

ldap_search

Chapter 2. LDAP routines 91

ldap_server
ldap_server_locate
ldap_server_conf_save
ldap_server_free_list

Purpose
Perform operations related to finding and saving published LDAP server information.

Format
#include <ldap.h>
int ldap_server_locate (

LDAPServerRequest *server_request,
LDAPServerInfo **server_info_listpp);

int ldap_server_free_list(
LDAPServerInfo *server_info_listp);

int ldap_server_conf_save(
char *filename,
unsigned long ttl,
LDAPServerInfo *server_info_listp);

typedef struct LDAP_Server_Request {
int search_source; /* Source for server info */

#define LDAP_LSI_CONF_DNS 0 /* Config first, then DNS (def)*/
#define LDAP_LSI_CONF_ONLY 1 /* Local Config file only */
#define LDAP_LSI_DNS_ONLY 2 /* DNS only */

char *conf_filename; /* pathname of config file */
int reserved; /* Reserved, set to zero */
char *service_key; /* Service string */
char *enetwork_domain; /* eNetwork domain (eDomain) */
char **name_servers; /* Array of name server addrs */
char **dns_domains; /* Array of DNS domains */
int connection_type; /* Connection type */

#define LDAP_LSI_UDP_TCP 0 /* Use UDP, then TCP (default)*/
#define LDAP_LSI_UDP 1 /* Use UDP only */
#define LDAP_LSI_TCP 2 /* Use TCP only */

int connection_timeout; /* connect timeout (seconds) */
char *DN_filter; /* DN naming context filter */
char *proto_key; /* Symbolic protocol name */
unsigned char reserved2[60]; /* reserved fields, set to 0 */

} LDAPServerRequest;

typedef struct LDAP_Server_Info {
char *lsi_host; /* LDAP server’s hostname */
unsigned short lsi_port; /* LDAP port */
char *lsi_suffix; /* Server’s LDAP naming context */
char *lsi_query_key; /* service_key[.edomain] */
char *lsi_dns_domain; /* Publishing DNS domain */
int lsi_replica_type; /* master or replica */

#define LDAP_LSI_MASTER 1 /* LDAP Master */
#define LDAP_LSI_REPLICA 2 /* LDAP Replica */

int lsi_sec_type; /* SSL or non-SSL */
#define LDAP_LSI_NOSSL 1 /* Non-SSL */
#define LDAP_LSI_SSL 2 /* Secure Server */

unsigned short lsi_priority; /* Server priority */
unsigned short lsi_weight; /* load balancing weight */
char *lsi_vendor_info; /* vendor information */
char *lsi_info; /* LDAP Info string */
struct LDAP_Server_Info *prev; /* linked list previous ptr */
struct LDAP_Server_Info *next; /* linked list next ptr */

} LDAPServerInfo;

ldap_server

92 z/OS V1R4.0 Security Server LDAP Client Programming

Parameters
Input

server_request
Specifies a pointer to an LDAPServerRequest structure, which should be initialized to zero prior to
setting specific parameters. This will ensure that defaults are used when a parameter is not explicitly
set. If the default behavior is desired for all possible input parameters, set server_request to NULL.
This is equivalent to setting all elements of the LDAPServerRequest structure to zeroes. Otherwise,
supply the address of the LDAPServerRequest structure, which contains the following fields:

search_source
Specifies where to find the server information. The options are:

v LDAP_LSI_CONF_DNS : First access the local LDAP DNS configuration file. If the file is not
found, or the file does not contain information for a combination of the service_key,
enetwork_domain and any of the DNS domains (as specified by the application), then access
DNS.

v LDAP_LSI_CONF_ONLY : Search the local LDAP DNS configuration file only.

v LDAP_LSI_DNS_ONLY : Search DNS only.

conf_filename
Specifies an alternative configuration file name. Specify NULL to get the default file name and
location (/etc/ldap/ldap_server_info.conf).

service_key
Specifies the search key (that is, the service name string) to be used when obtaining a list of SRV,
“pseudo-SRV TXT” or CNAME alias records from DNS. If not specified, the default is ldap .

Note that standards are moving towards the use of “_” as a prefix for service name strings. Over
time, it is expected that “_ldap” will be the preferred service name string for publishing LDAP
services in DNS. If the application does not specify service_key and no entries are returned using
the default ldap service name, the search will be automatically rerun using “_ldap” as the service
name. As an alternative, the application can explicitly specify “_ldap” as the service name, and
the search will be directed specifically at DNS SRV records that use “_ldap” as the service name.

Note that if proto_key is also unspecified, the default “ldap” service_key value is used in
conjunction with the default “tcp” proto_key value. If a subsequent search is performed, the
corresponding “_ldap” and “_tcp” default values are used.

enetwork_domain
Indicates that LDAP servers grouped within the specified eNetwork domain are to be located. An
eNetwork domain is simply a naming construct, implemented by the LDAP administrator, to further
subdivide a set of LDAP servers (as published in DNS) into logical groupings. By specifying an
eNetwork domain, only the LDAP servers grouped within the specified eNetwork domain will be
returned by the ldap_server_locate API. This can be very useful when an application, or group of
applications, needs access to a particular set of LDAP servers. For example, the research division
within a company might use a dedicated set of LDAP directories (masters and replicas). By
publishing this set of LDAP servers in DNS with an eNetwork domain of “research”, applications
that need to access to information published in research’s LDAP servers can selectively obtain the
host names and ports of research’s LDAP servers. Other LDAP servers also published in DNS will
not be returned.

The criteria for searching DNS to locate the appropriate LDAP server or servers is constructed by
concatenating the following information:
v service_key (defaults to ldap)
v enetwork_domain
v proto_key (defaults to tcp)
v DNS domain

For example, if:

ldap_server

Chapter 2. LDAP routines 93

v The default service_key of ldap is used
v The eNetwork domain is sales5
v The client’s default DNS domain is midwest.acme.com

then the DNS “value” used to search DNS for the set of LDAP servers belonging to the sales5
eNetwork domain is ldap.sales5.tcp.midwest.acme.com.

If enetwork_domain is not specified, the following steps are taken to determine the
enetwork_domain:

v The locally configured default, if set, is used (as set with the ldap_enetwork_domain_set API).

v If the locally configured default is not set, then the eNetwork domain component in the DNS
name is omitted. In the above example, this would result in the following string being used:
ldap.tcp.midwest.acme.com.

name_servers
Specifies a null-terminated array of DNS name server IP addresses (in dotted decimal format, for
example, 122.122.33.49). If not specified, the locally configured DNS name server or servers will
be used.

dns_domains
Specifies a null-terminated array of one or more DNS domain names. If not specified, the local
domain configuration is used.

Note that domain names supplied must be in standard DNS format. For example:
austin.ibm.com

DNS domains and configuration file

The local configuration file may contain server information for combinations of the following:
v Service key (typically set to “ldap” or “_ldap”)
v eNetwork domain
v DNS domains

When the application sets search_source to LDAP_LSI_CONFIG_DNS (the default), the
ldap_server_locate API will attempt to find server information in the configuration file for the
designated service key, eNetwork domain, and DNS domain or domains.

If the configuration file does not contain information that matches this criteria, the locator API will
then search DNS, using the specified service key, eNetwork domain, and DNS domain or
domains. For example:

v The application supplies the following three DNS domains:
– austin.ibm.com
– raleigh.ibm.com
– miami.ibm.com

Plus, the application uses the default service key (which is ldap) and specifies sales for the
eNetwork domain).

v The configuration file contains server information for austin.ibm.com and miami.ibm.com (with
the default service key and eNetwork domain of sales).

v Information is also published in DNS for raleigh.ibm.com (with the default service key and
eNetwork domain of sales).

v The search_source parameter is set to LDAP_LSI_CONFIG_DNS , which indicates that both the
configuration file and DNS are to be used if necessary.

v The locator API will build a single ordered list of server entries, with the following:

– Server entries for the austin.ibm.com DNS domain, as extracted from the configuration file.

ldap_server

94 z/OS V1R4.0 Security Server LDAP Client Programming

– Server entries for the raleigh.ibm.com DNS domain, as obtained from DNS over the
network.

– Server entries for the miami.ibm.com DNS domain, as extracted from the configuration file.

In other words, the resulting list of servers will contain all the austin.ibm.com servers first, followed
by the raleigh.ibm.com servers, followed by the miami.ibm.com servers. Within each grouping of
servers (by DNS domain), the entries are sorted by priority and weight.

connection_type
Specifies the type of connection to use when communicating with the DNS name server. The
following options are supported:
v LDAP_LSI_UDP_TCP : Use UDP first. If no response is received, or data truncation occurs,

then use TCP.
v LDAP_LSI_UDP : Only use UDP.
v LDAP_LSI_TCP : Only use TCP.

UDP is the preferred connection type, and typically performs well. You might want to consider
using TCP/IP if:

v The amount of data being returned will not fit in the 512-byte UDP packet.

v The transmission and receipt of UDP packets turns out to be unreliable. This may depend on
network characteristics.

connection_timeout
Specifies a timeout value when querying DNS (for both TCP and UDP). If LDAP_LSI_UDP_TCP
is specified for connection_type and a response is not received in the specified time period for
UDP, TCP will be attempted. A value of zero results in an infinite timeout. When the
LDAPServerRequest parameter is set to NULL, the default is ten seconds. When passing the
LDAPServerRequest parameter, this parameter should be set to a non-zero value if an indefinite
timeout is not desired.

DN_filter
Specifies a distinguished name (DN) to be used as a filter, for selecting candidate LDAP servers
based on the server’s naming context (or naming contexts). If the directory entry (as identified by
the DN filter) has the potential to be contained within a directory hierarchy rooted by the queried
naming context, an LDAPServerInfo structure is returned for the server/naming context
combination. Best matching servers are returned first in the list.

proto_key
Specifies the protocol key (for example, “tcp” or “_tcp”) to be used when obtaining a list of SRV,
“pseudo-SRV TXT” or CNAME alias records from DNS. If not specified, the default is “tcp” .

Note that standards are moving towards the use of “_” as a prefix for the protocol. Over time, it is
expected that “_tcp” will be the preferred protocol string for publishing LDAP and other services in
DNS. If the application does not specify proto_key and no entries are returned using the default
tcp protocol key, the search will be automatically rerun using “_tcp” as the protocol. As an
alternative, the application can explicitly specify “_tcp” as the protocol, and the search will be
directly specifically at DNS SRV records that use “_tcp” as the protocol.

reserved2
Represents a reserved area for future function, which should be initialized to zero.

server_info_listpp
Specifies the address that will be set to point to a linked list of LDAPServerInfo structures. Each
LDAPServerInfo structure defined in the list contains server information obtained from either:
v DNS
v Local configuration

ldap_server

Chapter 2. LDAP routines 95

filename
Specifies an alternative configuration file name. Specify NULL to get the default file name and location
(/etc/ldap/ldap_server_info.com).

ttl Specifies the time-to-live (in minutes) for the server information saved in the configuration file. Set ttl to
zero if it is intended to be a permanent repository of information.

When the ldap_server_locate API is used to access the configuration file with search_source set to
LDAP_LSI_CONF_ONLY , and the configuration file has not been refreshed in ttl minutes, then
LDAP_TIMEOUT error code is returned.

When the ldap_server_locate API is used to access the configuration file with search_source set to
LDAP_LSI_CONF_DNS , and the configuration file has not been refreshed in ttl minutes, then network
DNS is accessed to obtain server information.

server_info_listp
Specifies the address of a linked list of LDAPServerInfo structures. This linked list may have been
returned from the ldap_server_locate API, or may be constructed by the application.

Output

server_info_listpp
Upon successful return from ldap_server_locate , server_info_listpp points to a linked list of
LDAPServerInfo structures. The LDAPServerInfo structure (as defined above), contains the following
fields:

lsi_host
Fully-qualified hostname of the target server (NULL-terminated string).

lsi_port
Integer representation of the LDAP server’s port.

lsi_suffix
String that specifies a supported naming context for the LDAP server (NULL-terminated string).

lsi_query_key
Specifies the eNetwork domain to which the LDAP server belongs, prefixed by the service key. For
example, if service_key is ldap and enetwork_domain is sales, then lsi_query_key would be set to
ldap.sales. If the server is not associated with an eNetwork domain (as published in DNS), then
lsi_query_key consists solely of the service key value. For example, if the service key is _ldap and
the eNetwork domain is not set, then lsi_query_key would be set to _ldap.marketing.

lsi_dns_domain
Specifies the DNS domain in which the LDAP server was published. For example, the DNS search
may have been for ldap.tcp.austin.ibm.com, but the resulting server or servers has a
fully-qualified DNS host name of ldap2.raleigh.ibm.com. In this example, lsi_host would be set to
ldap2.raleigh.ibm.com while lsi_dns_domain would be set to austin.ibm.com. The actual domain
in which the server was “published” may be of interest, particularly when multiple DNS domains
are configured (or supplied as input).

lsi_replica_type
Specifies the type of server, LDAP_LSI_MASTER or LDAP_LSI_REPLICA . If set to zero, the type
is unknown.

lsi_sec_type
Specifies the port’s security type, LDAP_LSI_NOSSL or LDAP_LSI_SSL . This value is derived
from the ldap or ldaps prefix on the LDAP URL returned. If the LDAP URL is not defined, the
security type is unknown and lsi_sec_type is set to zero.

lsi_priority
Specifies the priority value obtained from the SRV RR (or the “pseudo-SRV” TXT RR). Set to zero
if unknown or not available.

ldap_server

96 z/OS V1R4.0 Security Server LDAP Client Programming

lsi_weight
Specifies the weight value obtained from the SRV RR (or the “pseudo-SRV” TXT RR). Set to zero
if unknown or not available.

lsi_vendor_info
NULL-terminated string obtained from the ldapvendor TXT RR (if defined). May be used to identify
the LDAP server vendor/version information.

lsi_info
NULL-terminated information string obtained from the ldapinfo TXT RR (if defined). If not defined,
lsi_info is set to NULL. This information string can be used by the LDAP or network administrator
to publish additional information about the target LDAP server.

prev
Points to the previous LDAP_Server_Info element in the linked list. This value is NULL if at the top
of the list.

next
Points to the next LDAP_Server_Info element in the linked list. This value is NULL if at the end of
the list.

Usage
The ldap_server_locate API is used to locate one or more suitable LDAP servers. In general, an
application will use the ldap_server_locate API, as follows:

v Prior to connecting to an LDAP server in the enterprise, use ldap_server_locate to obtain a list of one
or more LDAP servers that have been published in DNS (or in the local configuration file). Typically an
application can use the default request settings (by passing a NULL for the LDAPServerRequest
parameter). By default, the API will look for server information in the local configuration file first, then
move on to DNS if the local configuration file does not exist (or has expired).

Note that if no server entries are found, and the application does not specify the service key (which
defaults to “ldap”), then the ldap_server_locate function will re-run the complete search, using the
alternative “_ldap” for the service key. The results of this second search, if any, will be returned to the
application.

v Once the application has obtained the list of servers, it should walk the list, using the first server that
meets its needs. This will maximize the advantage that can be derived from using the priority and
weighting scheme implemented by the administrator. The application may not want to use the first
server in the list for several reasons:

– The client needs to specifically connect using SSL (or non-SSL). For each server in the list, the
application can query the root DSE to determine if the server supports a secure SSL port (this is the
preferred approach). For more information about accessing the root DSE, see “Searching a server’s
root DSE” on page 140. Alternatively, the application can walk the list until it finds a server entry with
the appropriate type of security. Note that an LDAP server may be listening on both an SSL and
non-SSL port. In this case, the server will have two entries in the server list.

– The client specifically needs to connect to a master (or replica).

– The client needs to connect to a server that supports a particular naming context. Note that the list of
servers returned in the list can be filtered by specifying DN_filter, which filters out servers that do not
have a naming context under which the DN resides. To confirm that a server actually supports the
naming context, it is recommended that the server’s root DSE be queried. See “Searching a server’s
root DSE” on page 140 for more information.

– There is some other characteristic associated with the desired server (possibly defined in the
ldapinfo string).

v Once the client has selected a server, it then issues the ldap_init or ldap_ssl_init API. If the selected
server is unavailable, the application is free to move down the list of servers until it either finds a
suitable server it can connect to, or the list is exhausted.

ldap_server

Chapter 2. LDAP routines 97

To free the list of servers (and associated LDAPServerInfo structures), the application should use the
ldap_server_free_list API.

The ldap_server_free_list API is used to free the linked list of LDAPServerInfo structures (and all
associated storage) as returned from the ldap_server_locate API.

The ldap_server_conf_save API is used to store server information into local configuration. The format
for specifying the server information on the ldap_server_conf_save API is identical to the format returned
from the ldap_server_locate API.

The application that writes information into the configuration file can specify an optional time-to-live for the
information stored in the file. When an application uses the locator API to access DNS server information,
the configuration file is considered to be stale if:
date/time_file_last_updated + ttl > current_date/time

If the application uses the default behavior for using the configuration file, it will bypass a stale
configuration file and attempt to find all needed information from DNS. Otherwise, the ttl should be set to
zero (indefinite ttl), in which case the information is considered to be good indefinitely.

Setting a non-zero ttl is most useful when an application (or other mechanism) exists for refreshing the
local configuration file on a periodic basis.

Note that sub-second response time can be expected in many cases, when using UDP to query DNS.
Since most applications will get the server information during initialization, repetitive invocation of the
locator API is usually unnecessary.

By default, the configuration file is stored at the following location:
/etc/ldap/ldap_server_info.conf

Format of local configuration file
Below is a sample definition for a local configuration file that is created with the ldap_server_conf_save
API. It is recommended that the file be created with the ldap_server_conf_save API. However, with
careful editing, it can also be created and maintained manually.

Some basic rules for managing this file manually:
v Comment fields are ignored, and must have “#” in the first character position
v All parameters are positional
v The first non-comment line must contain the time-to-live value for the file
v Contents of the file must be in IBM-1047 character set
###
Local LDAP DNS configuration file.
#
The first line holds the file’s expiration time, which is
a UNIX time_t value (time in seconds since January 1, 1970 UTC).
A value of 0 indicates that the file will not expire.
#
After the expiration time, Each of the following lines in
this file represents a known LDAP server. The lines have
the following format:
#
service domain host priority weight port replica sec "naming context" "vendor info" "general info"
#
where:
#
service= service_key[.eNetwork_domain]
#
domain= DNS domain
#
host= fully qualified DNS name of the LDAP Server host

ldap_server

98 z/OS V1R4.0 Security Server LDAP Client Programming

#
priority= target host with the lowest priority is tried first
#
weight= load balancing method. When multiple hosts have the
same priority, the host to be contacted first is determined
by the weight value. Set to 0 if load balancing is not needed.
#
port= The port to use to contact the LDAP Server.
#
replica= Use "1" to indicate Master.
"2" to indicate Replica.
#
sec= Use "1" to indicate Non-SSL
"2" to indicate SSL.
#
naming context = A naming context on the server.
#
vendor info= a string that identifies the LDAP server vendor
#
general info= Any informational text you wish to include.
#
0
ldap austin.ibm.com ldapserver1.austin.ibm.com 1 1 389 1 1 "ou=users,o=ibm,c=us" "IBM SecureWay"
"phoneinfo"

ldap austin.ibm.com ldapserver2.austin.ibm.com 1 1 389 2 1 "ou=users,o=ibm,c=us" "IBM SecureWay"
"phoneinfo replica"

ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "" ""
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "cn=GSO,o=IBM,c=US"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "ou=Austin,o=IBM,c=US" "IBM" "GSO ePersonbase"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "" ""
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "cn=GSO,o=IBM,c=US"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "ou=Austin,o=IBM,c=US" "IBM" "GSO ePersonbase"
ldap.sales raleigh.ibm.com saleshost1.raleigh.ibm.com 1 1 389 1 1 "dc=raleigh,dc=ibm,dc=com"
"IBM" "Sales Marketing"

ldap.sales raleigh.ibm.com saleshost2.raleigh.ibm.com 2 1 389 2 1 "dc=raleigh,dc=ibm,dc=com"
"IBM" "Sales Marketing Replica"

##

The newer form of service keys can also be used in the configuration file. For example, the following is an
excerpt that uses “_ldap” as the service key:
_ldap austin.ibm.com ldapserver1.austin.ibm.com 1 1 389 1 1 "ou=users,o=ibm,c=us" "IBM SecureWay"
"phoneinfo"

_ldap austin.ibm.com ldapserver2.austin.ibm.com 1 1 389 2 1 "ou=users,o=ibm,c=us" "IBM SecureWay"
"phoneinfo replica"

_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "" ""
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "cn=GSO,o=IBM,c=US"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "ou=Austin,o=IBM,c=US" "IBM" "GSO ePersonbase"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "" ""
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "cn=GSO,o=IBM,c=US"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "ou=Austin,o=IBM,c=US" "IBM" "GSO ePersonbase"
_ldap.sales raleigh.ibm.com saleshost1.raleigh.ibm.com 1 1 389 1 1 "dc=raleigh,dc=ibm,dc=com"
"IBM" "Sales Marketing"

_ldap.sales raleigh.ibm.com saleshost2.raleigh.ibm.com 2 1 389 2 1 "dc=raleigh,dc=ibm,dc=com"
"IBM" "Sales Marketing Replica"

Publishing LDAP server information in DNS
If DNS is to be used to publish LDAP server information, the LDAP administrator must arrange to
configure the relevant DNS name server or servers with the appropriate SRV and TXT records that reflect
the LDAP servers available in the enterprise.

This includes:

v If SRV records are supported by the DNS servers in the enterprise (and their use is desired), SRV
records must be created that identify the LDAP servers, along with appropriate weighting and priority
settings. For more information on SRV records and how they are used, see IETF RFC 2052 A DNS RR

ldap_server

Chapter 2. LDAP routines 99

for specifying the location of services (DNS SRV), dated October 1996. A more recent draft describes a
scheme where service keys and the protocol are prefixed with “_”. See IETF RFC 2052 A DNS RR for
specifying the location of services (DNS SRV), dated January 1999, for more information on this
proposed scheme.

v TXT records must be associated with the A record of each LDAP server published. The TXT records
include the LDAP URL records (which specify host name, port, base DN and port type (“ldap” for
non-SSL, and “ldaps” for SSL).

v If SRV records are not being used, the list of available servers must be specified with a set of TXT
records (which emulate the SRV RR format).

The LDAP server locator API will:

v Provide access to a list of LDAP servers. By default, the locator API will query a local configuration file
for the required information. If the file was updated with a nonzero time-to-live, and the file has become
“stale”, or the file does not contain the required information, the locator API will then access DNS. By
default, the local configuration file has no time-to-live, and is considered to be good indefinitely. Note
that the configuration file is designed to hold the same level of information per-server that can be
obtained from DNS.

v Gather data relevant to each of the LDAP servers from DNS, using three algorithms:
– SRV records
– “pseudo-SRV” records (using TXT records)
– A CNAME alias referencing a single host’s A record

The algorithms will be attempted in sequence until results are returned for one of the algorithms. For
example, if no SRV records are found, but pseudo-SRV records are found, the list of servers is built
from the pseudo-SRV records.

v Build a list of LDAP servers, with the first server in the list classified as the “preferred” or default server.
Depending on how DNS is used to publish LDAP servers, the preferred LDAP server may actually be a
reflection of how the administrator has organized the LDAP information in DNS. The application will
have access to the additional data that was retrieved from DNS. The additional information for each
LDAP server information structure can consist of the following:
– Host name and port
– eNetwork domain to which the server belongs
– Fully-qualified DNS domain in which the host name is published
– Naming context
– Replication type (master or replica)
– Security type (SSL or non-SSL)
– Vendor ID
– Administrator defined data

The application can use ldap_server_locate to obtain a list of one or more LDAP servers that exist in the
enterprise, and have been published in DNS (or the local configuration file). The additional data may be
used by the application to select the appropriate server. For example, the application may need a server
that supports a specific naming context, or may need to specifically access the master for update
operations.

As input to the API, the application can supply:

v A list of one or more DNS name server IP addresses. The default is to use the locally configured list of
name server addresses. Once an active name server is located, it is used for all subsequent
processing.

v The service key. The default is “ldap” . The service key is used to query DNS for information specific to
the LDAP protocol. For example, when searching for SRV records in the austin.ibm.com DNS domain,
the search would be for “ldap.tcp.austin.ibm.com” with type=SRV. This example assumes the search
does not include an eNetwork domain component (see next item).

ldap_server

100 z/OS V1R4.0 Security Server LDAP Client Programming

http://www.ietf.org/rfc/rfc2052.txt

The application can also specify “_ldap” as the service key and “_tcp” for the protocol, in which case
the search would be for “_ldap._tcp.austin.ibm.com” with type=SRV.

v The name of the eNetwork domain. The eNetwork domain is typically the name used to identify the
LDAP user’s authentication domain, and to further qualify the search for relevant LDAP servers, as
published in the user’s DNS domain. For example (to extend the previous example), when searching for
SRV records in the austin.ibm.com DNS domain, with an eNetwork domain of marketing the search
would be for “ldap.marketing.tcp.austin.ibm.com” with type=SRV.

v A list of one or more fully-qualified DNS domain names. The default is to use the locally configured
domain or domains.

If multiple domains are supplied (either in the default configuration, or explicitly supplied by the
application), information is gathered from each DNS domain. The server information returned from the
locator API is grouped by DNS domain. For example, if two domains are supplied (for example,
austin.ibm.com and raleigh.ibm.com), the entries for LDAP servers published in the austin.ibm.com
domain appear first in the list (with the austin.ibm.com servers sorted by priority and weight). Entries for
LDAP servers published in the raleigh.ibm.com domain follow the entire set of austin.ibm.com servers
(with the raleigh.ibm.com servers sorted by priority and weight). Note that all entries returned by the
locator API are associated with a single service_key.eNetwork_domain combination.

DNS domain names supplied here must be in the standard DNS format (for example, austin.ibm.com).

v The connection type (UDP or TCP).

v A DN for comparison against the naming context defined for each LDAP server entry. This string, if
supplied, is used as a filter. Only server entries that define a naming context which compares with the
DN are returned by the locator API. For example, a DN of “cn=fred, ou=accounting, o=ibm, c=us”
matches the first of the following, but not the second:
– o=ibm, c=us
– o=tivoli, c=us

The ability to filter based upon each LDAP server’s naming context is supplied as a convenience, so the
application does not need to step through the list of servers, comparing a DN with each entry’s naming
context.

v The application can specify how information residing in the local configuration file is used. The default is
to look in the local configuration file for the desired information. If not found, then DNS servers on the
network are accessed. The application can specify the following behaviors:
– Look in configuration file first, then access network (default)
– Look only in the configuration file
– Access DNS only

When using the default configuration file, the application does not need to specify the location.
Alternatively, the application can provide a path name to a configuration file.

Note that information stored in the configuration file takes the same form as information obtained from
DNS. The difference is that it is saved in the file by an application. The file can also be constructed and
distributed to end-users by the administrator.

Maximum benefit is obtained when applications can use the defaults for all the parameters (thus
minimizing application knowledge of the specifics related to locating LDAP servers).

Using SRV and TXT records
The DNS-lookup routine will look for SRV records first. If one or more servers are found, then the server
information is returned and the second algorithm, based on TXT records that emulate SRV records, is not
invoked.

The use of SRV records for finding the address of servers, for a specific protocol and domain, is described
in IETF RFC 2052 A DNS RR for Specifying the Location of Services (DNS SRV). Proper use of the SRV
RR permits the administrator to distribute a service across multiple hosts within a domain, to move the

ldap_server

Chapter 2. LDAP routines 101

http://www.ietf.org/rfc/rfc2052.txt

service from host to host without disruption, as well as to designate certain hosts as primary and others as
alternates, or backups (by using a priority and weighting scheme).

TXT stands for “TeXT”. TXT records are simply strings shared in a DNS server and associated with a DNS
name. BIND versions prior to 4.8.3 do not support TXT records. To fully implement the technique
described in RFC 2052, the DNS name servers must use a version of BIND that supports SRV records as
well as TXT records. A SRV resource record (RR) has the following components (per RFC 2052):
service.proto.name ttl class SRV priority weight port target

where:

service
Symbolic name of the desired service. By default, the service name (or service key) is ldap . When
used to publish servers that are associated with an eNetwork domain, the service value is derived by
concatenating the service key (for example, ldap) with the eNetwork domain name (for example,
marketing). The resulting service would then be ldap.marketing.

proto
Protocol, typically tcp or udp (or _tcp or _udp).

name
Domain name associated with the RR.

ttl Time-to-live, standard DNS meaning.

class
Standard DNS meaning (for example, IN).

priority
Target host with lowest number priority should be attempted first.

weight
Load balancing mechanism. When multiple target hosts have the same priority, the chance of
contacting one of the hosts first should be proportional to its weight. (That is, a higher number makes
it more likely the server will be contacted.) Set to 0 if load balancing is not necessary.

port
Port on the target host for the service.

target
Target host name (must have one or more A records associated with it).

The approach is to use SRV records to define a list of candidate LDAP servers, and to then use TXT
records associated with each host’s A record to get additional information about each LDAP server. Three
forms of TXT records are understood by the LDAP client DNS lookup routines:
ldap A 199.23.45.296

TXT "service:ldap://ldap.ibm.com:389/o=foo,c=us"
TXT "ldaptype: master"
TXT "ldapvendor: IBMeNetwork"
TXT "ldapinfo: ldapver=3, keyx=fastserver"

The service TXT record provides a standard LDAP URL (provides host, port and base DN).

The ldaptype TXT record identifies whether the LDAP server is a master or replica.

The ldapvendor TXT record identifies the vendor.

The ldapinfo free-form TXT record provides additional information, as defined by the LDAP or network
administrator. As in the example above, the information could be keyword based (the ldapinfo record is
available to the application.

ldap_server

102 z/OS V1R4.0 Security Server LDAP Client Programming

Finally, in combination, the name server configuration file should contain something like the following,
which effectively publishes the set of LDAP servers that reside in the marketing eNetwork domain:
ldap.marketing.tcp SRV 0 0 0 ldapm

SRV 0 0 0 ldapmsec
SRV 0 0 0 ldapmsuffix
SRV 1 1 0 ldapr1
SRV 1 2 0 ldapr2
SRV 1 2 0 ldapr2sec
SRV 2 1 2222 ldapr3.raleigh.ibm.com.

ldapm A 199.23.45.296
TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
TXT "ldaptype: master"

ldapmsec A 199.23.45.296
TXT "service:ldaps://ldapm.austin.ibm.com:686/o=foo,c=us"
TXT "ldaptype: master"

ldapmsuffix A 199.23.45.296
TXT "service:ldaps://ldapm.austin.ibm.com:389/o=moo,c=us"
TXT "ldaptype: master"

ldapr1 A 199.23.45.297
TXT "service:ldap://ldapr1:389/o=foo,c=us"
TXT "ldaptype: replica"

ldapr2 A 199.23.45.298
TXT "service:ldap://ldapr2:389/o=foo,c=us"
TXT "ldaptype: replica"

ldapr2sec A 199.23.45.298
TXT "service:ldaps://ldapr2/o=foo,c=us"
TXT "ldaptype: replica"
TXT "ldapinfo: ca=verisign, authtype=server"

ldapr3.raleigh.ibm.com. A 199.23.45.299

In this example, a DNS search for “ibmldap.marketing.tcp.austin.ibm.com” with type=SRV would return
seven SRV records, which represent entries for four hosts. Note that a SRV record is needed for each
port/naming context combination supported by a server. For example, a server that supports an SSL and
non-SSL port, would have at least two SRV records, and two corresponding A records (that point to the
same IP address). In this example, the A RR combinations for ldapm/ldapmsec/ldapmsuffix and
ldapr2/ldapr2sec map to the same host address. Note that ldapmsuffix provides an alternate naming
context for the 199.23.45.296 host.

The port specified on the SRV record is ignored if the target host has a TXT record containing an LDAP
URL. If the URL is specified without a port, the default port is used (389 for non-SSL, 636 for SSL).

Some rules related to constructing the strings associated with the TXT records as they appear above:

v If the string contains white space, the entire string following the “TXT” must be enclosed in double
quotes.

v If the string contains characters not supported by DNS (for example, the naming context might contain a
character or characters not supported by DNS), an escape is supported, based on the technique
described in IETF RFC 1738 Uniform Resource Locators (URL). For example:
TXT "service:ldaps://ldapr2/o=foo%f0,c=us"

permits the x’f0’ character to be included in the LDAP URL.

The algorithm for the use of LDAP servers is outlined below. The LDAP servers are ordered in the list
based on this algorithm. The application has the freedom of using the first server in the list (based on
priority and weight). It also has the freedom to select a different server, based upon its needs.

ldap_server

Chapter 2. LDAP routines 103

http://www.ietf.org/rfc/rfc1738.txt

Using ″Pseudo-SRV ″ TXT records
If the SRV algorithm does not return any servers, the secondary algorithm is invoked. Instead of looking
for SRV records, the lookup routine will perform a TXT query using the service name string supplied on
ldap_server_locate , which defaults to ldap.tcp .

Note: BIND versions prior to 8.x do not support “Pseudo-SRV” TXT records.

The intent with “Pseudo-SRV” records is to emulate the scheme provided with SRV records, but using a
search for TXT records instead. To duplicate the previous example using TXT records instead of SRV
records, the following definition (excerpt from a DNS server configuration file) is used:
ldap.marketing.tcp TXT 0 0 0 ldapm

TXT 0 0 0 ldapmsec
TXT 0 0 0 ldapmsuffix
TXT 1 1 0 ldapr1
TXT 1 2 0 ldapr2
TXT 1 2 0 ldapr2sec
TXT 2 1 2222 ldapr3.raleigh.ibm.com.

ldapm A 199.23.45.296
TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
TXT "ldaptype: master"

ldapmsec A 199.23.45.296
TXT "service:ldaps://ldapm.austin.ibm.com:686/o=foo,c=us"
TXT "ldaptype: master"

ldapmsuffix A 199.23.45.296
TXT "service:ldaps://ldapm.austin.ibm.com:389/o=moo,c=us"
TXT "ldaptype: master"

ldapr1 A 199.23.45.297
TXT "service:ldap://ldapr1:389/o=foo,c=us"
TXT "ldaptype: replica"

ldapr2 A 199.23.45.298
TXT "service:ldap://ldapr2:389/o=foo,c=us"
TXT "ldaptype: replica"

ldapr2sec A 199.23.45.298
TXT "service:ldaps://ldapr2/o=foo,c=us"
TXT "ldaptype: replica"
TXT "ldapinfo: ca=verisign, authtype=server"

ldapr3.raleigh.ibm.com. A 199.23.45.299

The LDAP resolver routine will assume that the default domain is in effect when the “SRV-type TXT”
records do not contain fully-qualified domain names.

Note that the pseudo-SRV TXT records, in many cases, can exactly replicate the syntax of SRV records,
with the exception that “SRV” is replaced by “TXT”. However, some versions of DNS require data
associated with the TXT records to be enclosed in double quotes, as follows:
ldap.marketing.tcp TXT "0 0 0 ldapm"

TXT "0 0 0 ldapmsec"

The ldap_server_locate API handles either format.

Using a CNAME alias record
If the pseudo-SRV algorithm does not return any servers, the third algorithm is invoked. Instead of looking
for TXT records, the lookup routine will perform a standard query using the service name string supplied
on ldap_server_locate , which defaults to ldap .

ldap_server

104 z/OS V1R4.0 Security Server LDAP Client Programming

ldap.marketing.tcp CNAME ldapm

ldapm A 199.23.45.296
TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
TXT "ldaptype: master"

If TXT records are not associated with the A record, defaults will be assumed for port and ldaptype.

Alternative scheme for publishing LDAP server information in DNS
A more recent IETF draft describes a scheme where service keys and the protocol are prefixed with “_”.
See the following Internet draft for more information on this new scheme, which may obsolete RFC 2052:
IETF RFC 2052 A DNS RR for Specifying the Location of Services (DNS SRV), dated January 1999.

When services are published in DNS using the approach proposed in this IETF draft, service names and
protocol are prefixed with “_”.

For instance, a previous example would be defined as follows:
_ldap.marketing._tcp SRV 0 0 0 ldapm

SRV 0 0 0 ldapmsec
SRV 0 0 0 ldapmsuffix
SRV 1 1 0 ldapr1
SRV 1 2 0 ldapr2
SRV 1 2 0 ldapr2sec
SRV 2 1 2222 ldapr3.raleigh.ibm.com.

If all LDAP service information is published within your enterprise in this way, the application can choose
to not specify service key or protocol, and the ldap_server_locate API will first perform its search using
“ldap” and “tcp” . The search will not find any entries, and the API will automatically rerun the search
using “_ldap” and “_tcp” for service key and protocol, which will return the information published with the
alternative scheme.

If information is published with both schemes, the application should explicitly define the service key and
protocol, to ensure that the desired information is returned.

ldap_server_locate usage by ldap_init, and ldap_ssl_init
The ldap_init , ldap_open , and ldap_ssl_init APIs are used to establish connections to LDAP servers.
These APIs all accept a URL to identify the host and port of an LDAP server to communicate with. The
format of the LDAP URL is as follows:
ldap[s]://[host][:port][/dn][?attributes[?scope[?filter]]]

where:

ldap:// Use an unsecured connection.

ldaps:// Use a Secure Socket Layer (SSL) secure connection.

host An optional DNS-style host name of the LDAP server.

port An optional port number.

dn A distinguished name (DN).

The attributes, scope, and filter portions of the URL are ignored by this operation.

When the host portion of the URL is omitted, these APIs internally call ldap_server_locate to locate an
LDAP server to communicate with.

An LDAPServerRequest structure is mandatory input for all ldap_server_locate function calls, including
the internal call made by these APIs. For this internal call, the fields in the input LDAPServerRequest
structure are set as follows:

ldap_server

Chapter 2. LDAP routines 105

DN_filter
Set to the dn value specified in the URL (or NULL if unspecified).

search_source
Set to LDAP_LSI_CONF_DNS .

Default values are used for the remaining fields.

The fully-qualified file name identifying the local LDAP DNS configuration file to search is determined by
the LDAP_SERVER_INFO_CONF environment variable setting. If this environment variable is not set, the
default file (/etc/ldap/ldap_server_info.conf) is searched. If no matching LDAP server information is
found in this file (or if the file is not found), then DNS is accessed to locate the server information.

If appropriate LDAP server information is returned by the internal call to ldap_server_locate , a connection
is established to an LDAP server.

Example: Assume a local configuration file containing LDAP server information does not exist. Also,
assume there is LDAP server information published in DNS identifying an LDAP server which:
v Serves the naming context “o=IBM,c=US”
v Listens on an unsecure (non-SSL) port

The following code generates an LDAP handle for communications with the LDAP server:
LDAP * ld = ldap_init("ldap:///cn=Scott,o=IBM,c=US", 0); /* port parameter ignored */

The LDAP server defined to DNS which best matches the DN “cn=Scott,o=IBM,c=US” will be contacted by
the LDAP client.

Error conditions
The ldap_server_locate , ldap_server_conf_save , and ldap_server_free_list APIs return
LDAP_SUCCESS if successful, otherwise an error code is returned. See “ldap_error” on page 42 for
possible values.

Related topics
ldap_error
ldap_init
ldap_ssl

ldap_server

106 z/OS V1R4.0 Security Server LDAP Client Programming

ldap_ssl
ldap_ssl_client_init
ldap_ssl_init
ldap_ssl_start (deprecated)

Purpose
Initialize the System Secure Socket Layer (SSL) and Transport Layer Security (TLS) functions for an LDAP
application and create a secure (SSL/TLS) connection to an LDAP server.

Format
#include <ldap.h>

#include <ldapssl.h>

int ldap_ssl_client_init(
char *keyring,
char *keyring_pw,
int ssl_timeout,
int *pSSLReasonCode)

LDAP *ldap_ssl_init(
char *host,
int port,
char *label)

int ldap_ssl_start(
LDAP *ld,
char *keyring,
char *keyring_pw,
char *label)

Parameters
Input

ld Specifies the LDAP pointer returned by a previous call to ldap_ssl_init or ldap_init .

host
Specifies the name of the host on which the LDAP server is running. The host parameter may contain
a blank-separated list of hosts to try to connect to, and each host may optionally be of the form
host:port. If present, the :port overrides the ldap_ssl_init port parameter. If the host parameter is
NULL, the LDAP server will be assumed to be running on the local host.

The host parameter can also be specified as a single LDAP URL. The format of the LDAP URL is:
ldap[s]://[host][:port][/dn][?attributes[?scope[?filter]]]

where:

host Is an optional DNS-style host name.

port Is an optional port number.

dn Is the distinguished name.

The attributes, scope, and filter portions of the URL are ignored by this operation.

The port number specified in the URL overrides the ldap_ssl_init parameter. If a port number is not
specified in the URL, the default port 636 is used regardless of the URL format specified (ldap or
ldaps).

ldap_ssl

Chapter 2. LDAP routines 107

|
|

|

|

|

If the URL host name is omitted, ldap_ssl_init attempts to locate an LDAP server to communicate
with through an internal call to the ldap_server_locate function. In this case, the dn field (if specified)
is used as input to ldap_server_locate to narrow the scope of eligible LDAP servers. See
“ldap_server_locate usage by ldap_init, and ldap_ssl_init” on page 105 for details.

Note: A successful ldap_ssl_init operation will always initialize a secure SSL connection regardless
of the URL format specified (ldap or ldaps).

port
Specifies the port number to which to connect. If the default IANA-assigned SSL port of 636 is desired,
LDAPS_PORT should be specified.

keyring
Specifies the name of the System SSL key database file or RACF key ring. System SSL assumes that
the name specifies a key database file. If the name is not a fully-qualified file name, then the current
directory is assumed to contain the file. The key database file must be a file and cannot be an MVS
dataset. If a corresponding file is not found then the name is assumed to specify a RACF key ring.

See “Use of key databases and RACF key rings” on page 110 for more information on System SSL
key databases and RACF key rings.

Note: Although still supported, use of the ldap_ssl_start API is discouraged (its use has been
deprecated). Any application using the ldap_ssl_start API should only use a single key
database file (per application process).

keyring_pw
Specifies either the key database file password or the file specification for a System SSL password
stash file. When the password stash file is used, it must be in the form file:// followed immediately (no
blanks) by the file specification (for example, file:///etc/ldap/sslstashfile). The stash file must be
a file and cannot be an MVS dataset.

label
Specifies the label associated with the client private key/certificate pair in the key database file. It is
used to uniquely identify a private key/certificate pair, as stored in the key database file, and may be
something like: Digital ID for Fred Smith

If the LDAP server is configured to perform only server authentication, a client certificate is not
required (and label can be set to NULL). If the LDAP server is configured to perform client and server
authentication, a client certificate is required. The label can be set to NULL if a certificate/private key
pair has been designated as the default (using gskkyman). Similarly, label can be set to NULL if there
is a single certificate/private key pair in the designated key database file.

ssl_timeout
Specifies the SSL timeout value in seconds. The timeout value controls the frequency with which the
SSL protocol stack regenerates session keys. If ssl_timeout is set to 0, the default value
SSLV3_CLIENT_TIMEOUT will be used. Otherwise, the value supplied will be used, provided it is less
than or equal to 86,400 (number of seconds in a day). If ssl_timeout is greater than 86,400,
LDAP_PARAM_ERROR is returned.

pSSLReasonCode
Specifies a pointer to the SSL Reason Code, which provides additional information in the event that an
error occurs during initialization of the SSL stack (when ldap_ssl_client_init is invoked). See
“ldapssl.h” on page 154 for reason codes that can be returned.

Usage
The ldap_ssl_client_init API is used to initialize the SSL/TLS protocol stack for an application process. It
should be invoked once, prior to making any other LDAP calls. Once ldap_ssl_client_init has been
successfully invoked, any subsequent invocations will return a return code of
LDAP_SSL_ALREADY_INITIALIZED .

ldap_ssl

108 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

The ldap_ssl_init API is the SSL/TLS equivalent of ldap_init . It is used to initialize a secure session with
a server. Note that the server is not actually contacted until an operation is performed that requires it,
allowing various options to be set after initialization. Once the secure connection is established for the ld,
all subsequent LDAP messages that flow over the secure connection are encrypted, including the
ldap_simple_bind parameters, until ldap_unbind is invoked.

The ldap_ssl_init API returns a session handle, a pointer to an opaque data structure that should be
passed to subsequent calls that pertain to the session. These subsequent calls will return NULL if the
session cannot actually be established with the server. Use ldap_get_option to determine why the call
failed.

The LDAP session handle returned by ldap_ssl_init (and ldap_init) is a pointer to an opaque data type
representing an LDAP session. The ldap_get_option and ldap_set_option APIs are used to access and
set a variety of session-wide parameters. See “ldap_init” on page 57 for more information about
ldap_get_option and ldap_set_option .

TCP/IP can cause a SIGPIPE signal to be generated when a peer closes their connection unexpectedly. In
order for the TCP/IP function calls to be notified the SIGPIPE signal should be ignored. This causes an
error return and EPIPE errno to be returned to the TCP/IP functions instead of creating the SIGPIPE
signal. The application should code the signal ignore prior to invoking the ldap_ssl_init API. An example
of the signal ignore call looks like:
sigignore(SIGPIPE);

Note that when connecting to an LDAP Version 2 server, the ldap_simple_bind call must be completed
before other operations can be performed on the session (with the exception of ldap_get_option or
ldap_set_option). The LDAP Version 3 protocol does not require a bind operation before performing other
operations.

Although still supported, the use of the ldap_ssl_start API is now deprecated. The ldap_ssl_client_init
and ldap_ssl_init APIs should be used instead. The ldap_ssl_start API starts a secure connection (using
SSL/TLS) to an LDAP server. The ldap_ssl_start API accepts the ld from an ldap_open and performs an
SSL/TLS handshake to a server. The ldap_ssl_start API must be invoked after ldap_open and prior to
ldap_bind . Once the secure connection is established for the ld, all subsequent LDAP messages that flow
over the secure connection are encrypted, including the ldap_bind parameters, until ldap_unbind is
invoked.

The following scenario depicts the recommended calling sequence where the entire set of LDAP
transactions are protected by using a secure SSL/TLS connection, including the DN and password that
flow on the ldap_simple_bind :
rc = ldap_ssl_client_init (keyfile, keyfile_pw, timeout);
ld = ldap_ssl_init(ldaphost, ldapport, label);
rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
rc = ldap_simple_bind_s(ld, binddn, passwd);

... additional LDAP API calls

rc = ldap_unbind(ld);

Note that the sequence of calls for the deprecated APIs is ldap_init , ldap_ssl_start , followed by
ldap_simple_bind .

The following ciphers are attempted for the SSL/TLS handshake by default, in the order shown.

LDAP_SSL_MD5_EX ″03″
LDAP_SSL_RC2_MD5_EX ″06″
LDAP_SSL_RC4_SHA_US ″05″
LDAP_SSL_RC4_MD5_US ″04″

ldap_ssl

Chapter 2. LDAP routines 109

|

|
|
|
|
|

|

|
|
|

|

|

|
|
|
|

LDAP_SSL_DES_SHA_EX ″09″
LDAP_SSL_3DES_SHA_US ″0A″
LDAP_SSL_RSA_AES_128_SHA ″2F″
LDAP_SSL_RSA_AES_256_SHA ″35″

Use of key databases and RACF key rings
The ldap_ssl APIs can use either a System SSL key database or a RACF key ring. By obtaining
certificates from trusted CAs, storing them in the key database file or RACF key ring, and marking them as
trusted, you can establish a trust relationship with LDAP servers that use certificates issued by one of the
CAs that are marked as trusted.

If the LDAP servers accessed by the client use server authentication, it is sufficient to define one or more
trusted root certificates in the key database file or RACF key ring. With server authentication, the client
can be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In
addition, all LDAP transactions that flow over the SSL/TLS connection with the server are encrypted,
including the LDAP credentials that are supplied on the ldap_bind API.

For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA
certificate from VeriSign, receive it into your key database file, and mark it as trusted. If the LDAP server is
using a self-signed server certificate, the administrator of the LDAP server can supply you with a copy of
the server’s certificate request file. Receive the certificate request file into your key database file or key
ring and mark it as trusted.

The contents of a client’s System SSL key database file is managed with the gskkyman utility. See z/OS:
System Secure Sockets Layer Programming for information about the gskkyman utility. The gskkyman
utility is used to define the set of trusted CAs that are to be trusted by the client.

System SSL encrypts the key database file. Either the password must be specified or the file specification
of a stash file that was created using the gskkyman utility must be specified in the form file:// followed
immediately (no blanks in between) by the file specification of the stash file.

RACF key rings are the recommended repository for certificates/keys. See the certificate/key management
section in z/OS: System Secure Sockets Layer Programming for instructions on how to migrate a key
database to RACF and how to use the RACDCERT command to protect the certificate and key ring.

The user ID under which the LDAP client runs must be authorized by RACF to use RACF key rings. To
authorize the LDAP client, you can use the RACF commands in the following example (where userid is the
user ID running the LDAP client utility):

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(userid) ACCESS(CONTROL)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(userid) ACCESS(CONTROL)

Remember to refresh RACF after doing the authorizations.

SETROPTS RACLIST(FACILITY) REFRESH

See “ldap_init” on page 57 for more information on setting the ciphers to be used.

Options
Options are supported for controlling the nature of the secure connection. These options are set using the
ldap_set_option API.

To specify the number of seconds for the SSL/TLS session-level timer, use:
ldap_set_option(ld,LDAP_OPT_SSL_TIMEOUT, &timeout)

ldap_ssl

110 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|

|

|

where timeout specifies timeout in seconds. When timeout occurs, SSL/TLS re-establishes the session
keys for the session for increased security.

To specify a specific cipher, or set of ciphers, to be used when negotiating with the server, use
ldap_set_option to define a sequence of ciphers. For example, the following defines a sequence of three
ciphers to be used when negotiating with the server. The first cipher that is found to be in common with
the server’s list of ciphers is used.
ldap_set_option(ld, LDAP_OPT_SSL_CIPHER,

(void *) LDAP_SSL_3DES_SHA_US LDAP_SSL_RC4_MD5_US);

The following ciphers are defined in ldap.h :

LDAP_SSL_MD5_EX ″03″
LDAP_SSL_RC2_MD5_EX ″06″
LDAP_SSL_RC4_SHA_US ″05″
LDAP_SSL_RC4_MD5_US ″04″
LDAP_SSL_DES_SHA_EX ″09″
LDAP_SSL_3DES_SHA_US ″0A″
LDAP_SSL_RSA_AES_128_SHA ″2F″
LDAP_SSL_RSA_AES_256_SHA ″35″

For more information on ldap_set_option , see “ldap_init” on page 57.

Notes
The ldapssl.h file contains return codes that are specific for ldap_ssl_client_init , ldap_ssl_init and
ldap_ssl_start .

The SSL/TLS versions of these utilities include RSA software.

Related topics
ldap_init
ldap_server

ldap_ssl

Chapter 2. LDAP routines 111

|

|
|
|
|
|
|
|
|

|

|

ldap_url
ldap_is_ldap_url
ldap_url_parse
ldap_free_urldesc
ldap_url_search
ldap_url_search_s
ldap_url_search_st

Purpose
LDAP Uniform Resource Locator (URL) routines.

Format
#include <sys/time.h> /* for struct timeval definition */

#include <ldap.h>

int ldap_is_ldap_url(
char *url)

int ldap_url_parse(
char *url,
LDAPURLDesc **ludpp)

typedef struct ldap_url_desc {
char *lud_host; /* LDAP host to contact */
int lud_port; /* port on host */
char *lud_dn; /* base for search */
char **lud_attrs; /* NULL-terminate list of attributes */
int lud_scope; /* a valid LDAP_SCOPE_... value */
char *lud_filter; /* LDAP search filter */
char *lud_string; /* for internal use only */
unsigned long lud_options; /* LDAP_URL_OPT_SECURE for "ldaps" format */
} LDAPURLDesc;

void ldap_free_urldesc(
LDAPURLDesc *ludp)

int ldap_url_search(
LDAP *ld,
char *url,
int attrsonly)

int ldap_url_search_s(
LDAP *ld,
char *url,
int attrsonly,
LDAPMessage **res)

int ldap_url_search_st(
LDAP *ld,
char *url,
int attrsonly,
struct timeval *timeout,
LDAPMessage **res)

ldap_url

112 z/OS V1R4.0 Security Server LDAP Client Programming

Parameters
Input

ld Specifies the LDAP handle returned by a previous call to ldap_ssl_init or ldap_init .

url Specifies the LDAP URL.

ludp
Specifies the URL description.

attrsonly
Specifies attribute information. Set to 1 to request attributes types only. Set to 0 to request both
attribute types and attribute values.

timeout
Specifies blocking for ldap_search_st . If timeout is not NULL , it specifies a maximum interval to wait
for the selection to complete. If timeout is NULL , the select blocks indefinitely until the result for the
operation identified by the msgid is received. To poll, the timeout parameter should be non-null,
pointing to a zero-valued timeval structure.

ludpp
Points to the LDAP URL description, as returned by ldap_url_parse .

Output

ludpp
Points to the LDAP URL description, as returned by ldap_url_parse .

res
On successful completion of the search, res is set to point to a set of LDAPMessage structures. These
should be parsed with ldap_first_entry and ldap_next_entry .

Usage
These routines support the use of LDAP URLs (Uniform Resource Locators). LDAP URLs look like this:
ldap[s]://[host][:port][/dn][?attributes[?scope[?filter]]]

where:

v host is a DNS-style host name and port is an optional port number

v dn is the base DN to be used for an LDAP search operation

v attributes is a comma separated list of attributes to be retrieved

v scope is one of these three strings:
base one sub (default=base)

v filter is an LDAP search filter as used in a call to ldap_search

For example,
ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

is an LDAP URL describing a one level search at the LDAP server running on host ldap.itd.umich.edu
listening on the default LDAP port (389) using base distinguished name c=US, requesting only the
organization and description attributes and applying the search filter o=umich.

URLs that are wrapped in angle brackets (<>) or preceded by URL: are also tolerated. An example of
URL:ldapurl is:
URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

An example of <URL:ldapurl> is:
<URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich>

ldap_url

Chapter 2. LDAP routines 113

The ldap_is_ldap_url API returns a nonzero value if url looks like an LDAP URL (as opposed to another
type of URL). Use the ldap_url_parse API routine if a more thorough check is needed.

Use the ldap_url_parse API to check the URL more thoroughly than the ldap_is_ldap_url API. The
ldap_url_parse API breaks down an LDAP URL passed in url into its component pieces. If successful,
LDAP_SUCCESS is returned, an LDAP URL description is allocated, filled in, and ludpp is set to point to
it.

The ldap_free_urldesc API deallocates storage allocated by ldap_url_parse .

The ldap_url_search API initiates an asynchronous LDAP search based on the contents of the url string.
This routine acts just like ldap_search except that many search parameters are pulled out of the URL.

The ldap_url_search_ s API initiates a synchronous LDAP search based on the contents of the url string.
This routine acts just like ldap_search_s except that many search parameters are pulled out of the URL.

The ldap_url_search_st API initiates a synchronous LDAP search based on the contents of the url string
and specifies a time-out. This routine acts just like ldap_search_st except that many search parameters
are pulled out of the URL.

Notes:

1. For search operations, if hostport is omitted, host and port for the current connection are used. If
hostport is specified, and is different from the host and port combination used for the current
connection, the search is directed to hostport, instead of using the current connection. In this case, the
underlying referral mechanism is used to bind to hostport.

2. If the LDAP URL does not contain a search filter, the filter defaults to objectClass=*.

3. Regarding the ldaps:// form of the LDAP URL:

v When input to APIs that establish connections to LDAP servers (ldap_init , and so on), this URL
form indicates to use an SSL connection.

v When input to ldap_url_parse , the lud_options field of the LDAPURLDesc structure returned is set
to LDAP_URL_OPT_SECURE .

Error conditions
If an error occurs for ldap_url_parse , one of the following values is returned:

LDAP_URL_ERR_NOTLDAP
URL doesn’t begin with ldap://

LDAP_URL_ERR_NODN
URL has no DN (required)

LDAP_URL_ERR_BADSCOPE
URL scope string is invalid

LDAP_URL_ERR_MEM
Can’t allocate memory space

The ldap_url_search API returns -1 in case of an error initiating the request. Use ldap_get_errno to
retrieve the error value. See “ldap_error” on page 42 for possible values.

The ldap_url_search_s and ldap_url_search_st APIs return LDAP_SUCCESS if successful, otherwise
an error code is returned. See “ldap_error” on page 42 for possible values.

Related topics
ldap_search

ldap_url

114 z/OS V1R4.0 Security Server LDAP Client Programming

Chapter 3. LDAP operation utilities

Note: This chapter does not contain programming interface information.

Several utility programs are provided that implement some of the LDAP APIs. These utilities provide a way
to add, modify, search and delete entries in any server accepting LDAP protocol requests.

Each of the following programs can be run from the z/OS shell or TSO:
v ldapadd
v ldapmodify
v ldapmodrdn
v ldapsearch
v ldapdelete

Running the LDAP operation utilities in the z/OS shell
In order to run any of these utilities in the shell, some environment variables need to be set properly.
Ensure that /bin is included in the PATH environment variable. Also, make sure STEPLIB is set to
GLDHLQ.SGLDLNK.

Each of these utilities accepts many possible parameters. See “Using the command line utilities” on
page 116 for a complete explanation of the parameters that can be supplied to each of the operation utility
programs.

Note: When using these utilities to communicate with an z/OS LDAP Server operating in multi-server
mode with dynamic workload management enabled (see the configuring chapter in z/OS: Security
Server LDAP Server Administration and Use for additional information about LDAP server operating
modes), the hostname value in the preceding commands should be in the form
group_name.sysplex_domain_name, where group_name is the name of the sysplexGroupName
identified in the server configuration files and sysplex_domain_name is the name or alias of the
sysplex domain in which the servers operate.

Running the LDAP operation utilities in TSO
If you are using the utilities in interactive mode (for example, reading DNs, changetypes, and so on, from
standard input), it is possible to break out of interactive mode by pressing <PA1>. This will return the TSO
session to the READY prompt. This is similar to using <Control-C> in USS.

The LDAP operation utilities can be run from TSO. In order to do this, some elements of the environment
need to be set up to locate the LDAP programs.

First, the PDS (GLDHLQ.SGLDLNK) where the LDAP server load modules were installed needs to be
specified in one of LINKLIB , LPALIB or TSOLIB . Second, the PDS (GLDHLQ.SGLDEXEC) containing the
CLISTs needed to run the utilities must be available in SYSEXEC.

Once this setup is complete, running these utilities follows the same syntax as would be used if running
them in z/OS, except that the program names are eight characters or less. To run these utilities from TSO,
use the following names:

z/OS shell name TSO name

ldapadd ldapadd

ldapmodify ldapmdfy

ldapmodrdn ldapmrdn

© Copyright IBM Corp. 1999, 2002 115

|
|
|

z/OS shell name TSO name

ldapsearch ldapsrch

ldapdelete ldapdlet

Using the command line utilities
The ldapdelete , ldapmodify , ldapadd , ldapmodrdn , and ldapsearch utilities all use the ldap_bind_s
API. When bind is invoked, several results can be returned. Following are bind results using various
combinations of user IDs and passwords.

1. If a null or 0 length DN is specified, the user receives unauthenticated access.

2. If a non-null, non-0 length DN is specified, a password must also be specified.

v If the DN exists in the database, the entry must have a userpassword value and the password must
match the specified value. The user is then bound with that identity.

v If the DN does not exist in the database, the DN must be the administrator DN specified in the
adminDN value in the configuration file and the password must match the adminPW value in the
configuration file. The administrator DN must not be in the namespace of the LDAP server. The user
is then bound as the administrator.

An error is returned when binding with any other combination of user ID and password.

Note: If you are using an LDAP server other than the z/OS LDAP server, the bind results may be
different.

SSL/TLS information for LDAP utilities
The contents of a client’s key database file is managed with the gskkyman utility. See z/OS System
Secure Sockets Layer Programming Guide for information about the gskkyman utility. The gskkyman
utility is used to define the set of trusted certification authorities (CAs) that are to be trusted by the client.
By obtaining certificates from trusted CAs, storing them in the key database file, and marking them as
trusted, you can establish a trust relationship with LDAP servers that use certificates issued by one of the
CAs that are marked as trusted.

If the LDAP servers accessed by the client use server authentication, it is sufficient to define one or more
trusted root certificates in the key database file. With server authentication, the client can be assured that
the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP
transactions that flow over the SSL/TLS connection with the server are encrypted, including the LDAP
credentials that are supplied on the ldap_bind API.

For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA
certificate from VeriSign, receive it into your key database file, and mark it as trusted. If the LDAP server is
using a self-signed gskkyman server certificate, the administrator of the LDAP server can supply you with
a copy of the server’s certificate request file. Receive the certificate request file into your key database file
and mark it as trusted.

Using the LDAP operation utilities without the -Z parameter and calling the secure port on an LDAP server
(in other words, a non-secure call to a secure port) is not supported. Also, a secure call to a non-secure
port is not supported.

SSL/TLS encrypts the key ring file. Either the password must be specified as part of the -P parameter or
file specification of a stash file that was created using the gskkyman utility must be specified in the form
file:// followed immediately (no blanks in between) by the file specification of the stash file.

116 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|

|
|
|

Using RACF key rings
Alternately, LDAP supports the use of a RACF key ring. See the certificate/key management section in
z/OS: System Secure Sockets Layer Programming for instructions on how to migrate a key database to
RACF and how to use the RACDCERT command to protect the certificate and key ring.

The user ID under which the LDAP client runs must be authorized by RACF to use RACF key rings. To
authorize the LDAP client, you can use the RACF commands in the following example (where userid is the
user ID running the LDAP client utility):
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(userid) ACCESS(CONTROL)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(userid) ACCESS(CONTROL)

Remember to refresh RACF after doing the authorizations.
SETROPTS RACLIST(FACILITY) REFRESH

Once the RACF key ring is set up and authorized, specify the RACF key ring name for the -K keyfile
option and do not specify the -P keyfilepw option.

CRAM-MD5 authentication to an IBM Directory Server
CRAM-MD5 authentication is supported on the IBM Directory Server and client utilities. However, the way
that it has been implemented on the IBM Directory Server is different than the z/OS LDAP server. Thus,
this has resulted in differences between the IBM Directory Server and the z/OS LDAP server client utilities.
In order to perform a CRAM-MD5 authentication bind with the z/OS operation utilities to an IBM Directory
Server, you must specify the bind DN (authorization DN) with the -D option. The -U username option on
the z/OS operation utilities should not be used when attempting to do a CRAM-MD5 authentication bind to
an IBM Directory Server because it is not supported.

Chapter 3. LDAP operation utilities 117

ldapdelete utility

Purpose
The ldapdelete utility is a shell-accessible interface to the ldap_delete API.

The ldapdelete utility opens a connection to an LDAP server, binds, and deletes one or more entries. If
one or more dn arguments are provided, entries with those DNs are deleted. If no dn arguments are
provided, a list of DNs is read from standard input (<entryfile) or from file if the -f flag is used.

Format
ldapdelete [options] {-f file | < entryfile | dn... }

Parameters
options

The following table shows the options you can use for the ldapdelete utility:

Table 5. ldapdelete options

Option Description

-? Print this text.

-V version Specify the LDAP protocol level the client should use. The value for version can be 2 or 3.
The default is 3.

-S method
or
-m method

Specify the bind method to use. You can use either -m or -S to indicate the bind method.

The default is SIMPLE. You can also specify GSSAPI to indicate a Kerberos Version 5 is
requested, EXTERNAL to indicate that a certificate (SASL external) bind is requested,
CRAM-MD5 to indicate that a SASL Challenge Response Authentication Mechanism bind is
requested, or DIGEST-MD5 to indicate a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must have a valid Kerberos
Ticket Granting Ticket in their credentials cache by using the Kerberos kinit command line
utility.

The EXTERNAL method requires a protocol level of 3. You must also specify -Z, -K, and -P
to use certificate bind. If there is more than one certificate in the key database file, use -N to
specify the certificate or the default certificate will be used.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U option must be
specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option must be specified.
The -D option can optionally be used to specify the authorization DN.

-c Continuous operation mode. Errors are reported, but ldapdelete will continue with deletions.
The default is to exit after reporting an error.

-n Show what would be done, but do not actually delete entries. Useful for debugging in
conjunction with -v.

-v Use verbose mode, with many diagnostics written to standard output.

-R Do not automatically follow referrals.

-M Manage referral objects as normal entries. This requires a protocol level of 3.

-d debuglevel Specify the level of debug messages to be created. The debug level is specified in the same
fashion as the debug level for the LDAP server. See Table 2 on page 16 for the possible
values for debuglevel. The default is no debug messages.

ldapdelete

118 z/OS V1R4.0 Security Server LDAP Client Programming

|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

||

|

Table 5. ldapdelete options (continued)

Option Description

-D binddn Use binddn to bind to the LDAP directory. The binddn parameter should be a
string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option is the
authorization DN which will be used for making access checks. This directive is optional
when used in this manner.

-w passwd Use passwd as the password for simple, CRAM-MD5, and DIGEST-MD5 authentication. The
default is a NULL string.

-h ldaphost Specify the host on which the LDAP server is running. The default is the local host.

When the target host is a z/OS LDAP server operating in multi-server mode with dynamic
workload management enabled (see the configuring chapter in z/OS: Security Server LDAP
Server Administration and Use for additional information about LDAP server operating
modes), the ldaphost value should be in the form group_name.sysplex_domain_name,
where group_name is the name of the sysplexGroupName identified in the server
configuration file and sysplex_domain_name is the name or alias of the sysplex domain in
which the target server operates.

-p ldapport Specify the TCP port where the LDAP server is listening. The default LDAP non-secure port
is 389 and the default LDAP secure port is 636.

-Z Use a secure connection to communicate with the LDAP server. Secure connections expect
the communication to begin with the SSL/TLS handshake.

The -K keyfile option or equivalent environment variable is required when the -Z option is
specified. The -P keyfilepw option is required when the -Z option is specified and the key file
specifies an HFS key database file. The -N keyfilelabel option must be specified if you wish
to use a certificate that is different than the default specified in the key database.

-K keyfile Specify the name of the System SSL key database file or RACF key ring. If this option is not
specified, this utility looks for the presence of the SSL_KEYRING environment variable with
an associated name.

System SSL assumes that the name specifies a key database file. If the name is not a
fully-qualified file name, then the current directory is assumed to contain the file. The key
database file must be a file and cannot be an MVS data set. If a corresponding file is not
found then the name is assumed to specify a RACF key ring.

See “SSL/TLS information for LDAP utilities” on page 116 for information on System SSL key
databases and RACF key rings.

This parameter is ignored if -Z is not specified.

-P keyfilepw Specify either the key database file password or the file specification for a System SSL
password stash file. When the stash file is used, it must be in the form file:// followed
immediately (no blanks) by the HFS file specification (for
example, file:///etc/ldap/sslstashfile). The stash file must be a file and cannot be an
MVS data set.

This parameter is ignored if -Z is not specified.

-N keyfilelabel Specify the label associated with the key in the System SSL key database or RACF key
ring.

This parameter is ignored if -Z is not specified

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The userName is a short
name (for example, the uid attribute value) that will be used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

ldapdelete

Chapter 3. LDAP operation utilities 119

||
|

|
|
|

||
|

||
|

||
|

|
|
|
|

||
|
|

|
|
|
|

|
|

|

|

|
|

||
|

|

Table 5. ldapdelete options (continued)

Option Description

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind. This option is required
when multiple realms are passed from an LDAP server to a client as part of a DIGEST-MD5
challenge; otherwise, it is optional.

-f file
Read a series of lines from file, performing one LDAP delete for the DN on each line.

entryfile
Specify a file containing DNs to delete on consecutive lines.

dn Specify distinguished name (DN) of an entry to delete. You can specify one or more dn arguments.
Each dn should be a string-represented DN.

Examples
Following are some ldapdelete examples:

v The following command:
ldapdelete "cn=Delete Me, o=My Company, c=US"

attempts to delete the entry named with commonName Delete Me directly below My Company
organizational entry. It may be necessary to supply a binddn and passwd for deletion to be allowed (see
the -D and -w options).

v For z/OS LDAP support for RACF access, the following command:
ldapdelete -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd

"racfid=u1,profiletype=user,sysplex=sysplexa"

attempts to delete the RACF user u1 and remove all the connections of u1 to RACF groups. It is
assumed that the z/OS LDAP support for RACF access suffix is sysplex=sysplexa and that admin1 has
the RACF authority to make this update to RACF.

Notes
If no dn arguments are provided, the ldapdelete command will wait to read a list of DNs from standard
input. To break out of the wait, use <Ctrl-C> or <Ctrl-D>.

The LDAP_DEBUG environment variable may be used to set the debug level. For more information on
specifying the debug level using keywords, decimal, hexadecimal, and plus and minus syntax, see
“Tracing” on page 15.

If you are attempting a CRAM-MD5 authentication bind to an IBM Directory Server, see “CRAM-MD5
authentication to an IBM Directory Server” on page 117 for more information.

You can specify an LDAP URL for ldaphost on the -h parameter. See 58 for more information.

SSL/TLS note
See “SSL/TLS information for LDAP utilities” on page 116.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a diagnostic message being
written to standard error.

ldapdelete

120 z/OS V1R4.0 Security Server LDAP Client Programming

||
|
|

|
|

ldapmodify and ldapadd utilities

The ldapmodify utility is a shell-accessible interface to the ldap_modify and ldap_add APIs. The
ldapadd command is implemented as a renamed version of ldapmodify . When invoked as ldapadd , the
-a (add new entry) flag is turned on automatically.

The ldapmodify utility opens a connection to an LDAP server, binds, and modifies or adds entries. The
entry information is read from standard input or from file through the use of the -f option.

Format
ldapmodify | ldapadd [options]

Parameters
options

The following table shows the options you can use for the ldapmodify and ldapadd utilities:

Table 6. ldapmodify and ldapadd options

Option Description

-? Print this text.

-V version Specify the LDAP protocol level the client should use. The value for version can be 2 or 3.
The default is 3.

-S method
or
-m method

Specify the bind method to use. You can use either -m or -S to indicate the bind method.

The default is SIMPLE. You can also specify GSSAPI to indicate a Kerberos Version 5 is
requested, EXTERNAL to indicate that a certificate (SASL external) bind is requested,
CRAM-MD5 to indicate that a SASL Challenge Response Authentication Mechanism bind is
requested, or DIGEST-MD5 to indicate a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must have a valid Kerberos
Ticket Granting Ticket in their credentials cache by using the Kerberos kinit command line
utility.

The EXTERNAL method requires a protocol level of 3. You must also specify -Z, -K, and -P
to use certificate bind. If there is more than one certificate in the key database file, use -N to
specify the certificate or the default certificate will be used.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U option must be
specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option must be specified.
The -D option can optionally be used to specify the authorization DN.

-c Continuous operation mode. Errors are reported, but ldapmodify will continue with
modifications. The default is to exit after reporting an error.

-n Show what would be done, but do not actually modify entries. Useful for debugging in
conjunction with -v.

-v Use verbose mode, with many diagnostics written to standard output.

-R Do not automatically follow referrals.

-M Manage referral objects as normal entries. This requires a protocol level of 3.

-a Add new entries. The default for ldapmodify is to modify existing entries. If invoked as
ldapadd , this flag is always set.

-b Assume that any values that start with a slash (/) are binary values and that the actual value
is in a file whose path is specified in the place where values normally appear.

-r Replace existing values by default.

ldapmodify and ldapadd

Chapter 3. LDAP operation utilities 121

||
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

||

Table 6. ldapmodify and ldapadd options (continued)

Option Description

-F Force application of all changes regardless of the contents of input lines that begin with
replica : (by default, replica : lines are compared against the LDAP server host and port in
use to decide if a replication log record should actually be applied).

-d debuglevel Specify the level of debug messages to be created. The debug level is specified in the same
fashion as the debug level for the LDAP server. See Table 2 on page 16 for the possible
decimal values for debuglevel. The default is no debug messages.

-f file Read the entry modification information from file instead of from standard input.

If you specify an LDIF file as input for this option, it must be an HFS file (and not a dataset).
In addition, the separator line between LDIF clauses must be blank (that is, it must not
contain any characters or white space).

-D binddn Use binddn to bind to the LDAP directory. The binddn parameter should be a
string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option is the
authorization DN which will be used for making access checks. This directive is optional
when used in this manner.

-w passwd Use passwd as the password for simple, CRAM-MD5, and DIGEST-MD5 authentication. The
default is a NULL string.

-h ldaphost Specify the host on which the LDAP server is running. The default is the local host.

When the target host is a z/OS LDAP server operating in multi-server mode with dynamic
workload management enabled (see the configuring chapter in z/OS: Security Server LDAP
Server Administration and Use for additional information about LDAP server operating
modes), the ldaphost value should be in the form group_name.sysplex_domain_name,
where group_name is the name of the sysplexGroupName identified in the server
configuration file and sysplex_domain_name is the name or alias of the sysplex domain in
which the target server operates.

-p ldapport Specify the TCP port where the LDAP server is listening. The default LDAP non-secure port
is 389 and the default LDAP secure port is 636.

-Z Use a secure connection to communicate with the LDAP server. Secure connections expect
the communication to begin with the SSL/TLS handshake.

The -K keyfile option or equivalent environment variable is required when the -Z option is
specified. The -P keyfilepw option is required when the -Z option is specified and the key file
specifies an HFS key database file. The -N keyfilelabel option must be specified if you wish
to use a certificate that is different than the default specified in the key database.

-K keyfile Specify the name of the System SSL key database file or RACF key ring. If this option is not
specified, this utility looks for the presence of the SSL_KEYRING environment variable with
an associated name.

System SSL assumes that the name specifies a key database file. If the name is not a
fully-qualified file name, then the current directory is assumed to contain the file. The key
database file must be a file and cannot be an MVS data set. If a corresponding file is not
found then the name is assumed to specify a RACF key ring.

See “SSL/TLS information for LDAP utilities” on page 116 for information on System SSL key
databases and RACF key rings.

This parameter is ignored if -Z is not specified.

Once the RACF key ring is set up and authorized, specify the RACF key ring name for the
-K keyfile option and do not specify the -P keyfilepw option.

ldapmodify and ldapadd

122 z/OS V1R4.0 Security Server LDAP Client Programming

|

||
|

|
|
|

||
|

||
|

|
|
|
|

Table 6. ldapmodify and ldapadd options (continued)

Option Description

-P keyfilepw Specify either the key database file password or the file specification for a System SSL
password stash file. When the stash file is used, it must be in the form file:// followed
immediately (no blanks) by the HFS file specification (for example,
file:///etc/ldap/sslstashfile). The stash file must be a file and cannot be an MVS data
set.

This parameter is ignored if -Z is not specified.

-N keyfilelabel Specify the label associated with the key in the System SSL key database or RACF key
ring.

This parameter is ignored if -Z is not specified

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The userName is a short
name (for example, the uid attribute value) that will be used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind. This option is required
when multiple realms are passed from an LDAP server to a client as part of a DIGEST-MD5
challenge; otherwise, it is optional.

Input modes
The ldapmodify command as well as the ldapadd command accept two forms of input. The type of input
is determined by the format of the first input line supplied to ldapmodify or ldapadd .

Note: The ldapadd command is equivalent to invoking the ldapmodify -a command.

The first line of input to the ldapmodify command (or ldapadd command) must denote the distinguished
name of a directory entry to add or modify. This input line must be of the form:
dn:distinguished_name

or
distinguished_name

where dn : is a literal string and distinguished_name is the distinguished name of the directory entry to
modify (or add). If dn : is found, the input mode is set to LDIF mode. If it is not found, the input mode is set
to modify mode.

Note: The ldapmodify and ldapadd utilities do not support base64 encoded distinguished names.

LDIF mode: When using LDIF mode style input, attribute types and values are delimited by colons (or
double colons (::)). Furthermore, individual changes to attribute values are delimited with a changetype:
input line. The general form of input lines for LDIF mode is:
change_record
<blank line>
change_record
<blank line>
.
.
.

An input file in LDIF mode consists of one or more change_record sets of lines which are separated by a
single blank line. Each change_record has the following form:

ldapmodify and ldapadd

Chapter 3. LDAP operation utilities 123

|

|
|

||
|

|

||
|
|

dn:distinguished_name
[changetype:{modify|add|modrdn|delete}]
{change_clause
.
.
.}

Thus, a change_record consists of a line indicating the distinguished name of the directory entry to be
modified, an optional line indicating the type of modification to be performed against the directory entry,
along with one or more change_clause sets of lines. If the changetype line is omitted, then the change
type is assumed to be modify unless the command invocation was ldapmodify -a or ldapadd , in which
case the changetype is assumed to be add .

When the change type is modify , each change_clause is defined as a set of lines of the form:
add:x
{attrtype}{sep}{value}
.
.
.
-

or
replace:x
{attrtype}{sep}{value}
.
.
.
-

or
delete:{attrtype}
[{attrtype}{sep}{value}]
.
.
.
-

or
{attrtype}{sep}{value}
.
.
.

Specifying replace replaces all existing values for the attribute with the specified set of attribute values.
Specifying add adds to the existing set of attribute values. Specifying delete without any attribute-value
pair records removes all the values for the specified attribute. Specifying delete followed by one or more
attribute-value pair records removes only those values specified in the attribute-value pair records.

If an add:x , replace:x , or delete: attrtype line (a change indicator) is specified, a line containing a hyphen
(-) is expected as a closing delimiter for the changes. Attribute-value pairs are expected on the input lines
that are found between the change indicator and hyphen line. If the change indicator line is omitted, the
change is assumed to be add for the attribute values specified. However, if the -r option is specified on
ldapmodify , then the change_clause is assumed to be replace . The separator, sep, can be either a single
colon (:) or double colon (::). Any white space between the separator and the attribute value is ignored.
Attribute values can be continued across multiple lines by using a single space character as the first
character of the next line of input. If a double colon is used as the separator, then the input is expected to
be in so-called base64 format. This format is an encoding that represents every three binary bytes with
four text characters. Refer to the base64encode function in /usr/lpp/ldap/examples/line64.c for an
implementation of this encoding.

ldapmodify and ldapadd

124 z/OS V1R4.0 Security Server LDAP Client Programming

Multiple attribute values are specified using multiple {attrtype}{sep}{value} specifications.

When the change type is add , each change_clause is defined as a set of lines of the form:

{attrtype}{sep}{value}

As with change type of modify , the separator, sep, can be either a single colon (:) or double colon (::).
Any white space between the separator and the attribute value is ignored. Attribute values can be
continued across multiple lines by using a single space character as the first character of the next line of
input. If a double colon is used as the separator, then the input is expected to be in so-called base64
format.

When the change type is modrdn , each change_clause is defined as a set of lines of the form:
newrdn:value
deleteoldrdn:{0|1}

These are the parameters you can specify on a modify RDN LDAP operation. The value for the newrdn
setting is the new RDN to be used when performing the modify RDN operation. Specify 0 for the value of
the deleteoldrdn setting in order to save the attribute in the old RDN and specify 1 to remove the attribute
values in the old RDN.

When the change type is delete , no change_clause is specified.

LDIF mode examples : Here are some examples of valid input for the ldapmodify command using LDIF
mode.

Adding a new entry:
dn:cn=Tim Doe, ou=Your Department, o=Your Company, c=US
changetype:add
cn: Tim Doe
sn: Doe
objectclass: organizationalperson
objectclass: person
objectclass: top

This example adds a new entry into the directory using name cn=Tim Doe, ou=Your Department, o=Your
Company, c=US, assuming ldapadd or ldapmodify -a is invoked.

Adding attribute types:
dn:cn=Tim Doe, ou=Your Department, o=Your Company, c=US
changetype:modify
add:x
telephonenumber: 888 555 1234
registeredaddress: td@yourcompany.com
registeredaddress: ttd@yourcompany.com
-

This example adds two new attribute types to the existing entry. Note that the registeredaddress attribute
is assigned two values.

Changing the entry name:
dn: cn=Tim Doe, ou=Your Department, o=Your Company, c=US
changetype:modrdn
newrdn: cn=Tim Tom Doe
deleteoldrdn: 0

ldapmodify and ldapadd

Chapter 3. LDAP operation utilities 125

This example changes the name of the existing entry to cn=Tim Tom Doe, ou=Your Department, o=Your
Company, c=US. The old RDN, cn=Tim Doe, is retained as an additional attribute value of the cn attribute.
The new RDN, cn=Tim Tom Doe, is added automatically by the LDAP server to the values of the cn
attribute in the entry.

Replacing attribute values:
dn: cn=Tim Tom Doe, ou=Your Department, o=Your Company, c=US
changetype:modify
replace:x
telephonenumber: 888 555 4321
registeredaddress: tim@yourcompany.com
registeredaddress: timtd@yourcompany.com
-

This example replaces the attribute values for the telephonenumber and registeredaddress attributes
with the specified attribute values.

Deleting and adding attributes:
dn:cn=Tim Tom Doe, ou=Your Department, o=Your Company, c=US
changetype:modify
add:x
description: This is a very long attribute
value that is continued on a second line.
Note the spacing at the beginning of the
continued lines in order to signify that
the line is continued.

-
delete: telephonenumber
-
delete: registeredaddress
registeredaddress: tim@yourcompany.com
-

This example deletes the telephonenumber attribute, deletes a single registeredaddress attribute value,
and adds a description attribute.

Deleting an entry:
dn:cn=Tim Tom Doe, ou=Your Department, o=Your Company, c=US
changetype:delete

This example deletes the directory entry with name cn=Tim Tom Doe, ou=Your Department, o=Your
Company, c=US.

Modify mode: The modify mode of input to the ldapmodify or ldapadd commands is not as flexible as
the LDIF mode. However, it is sometimes easier to use than the LDIF mode.

When using modify mode style input, attribute types and values are delimited by an equal sign (=). The
general form of input lines for modify mode is:
change_record
<blank line>
change_record
<blank line>
.
.
.

An input file in modify mode consists of one or more change_record sets of lines which are separated by a
single blank line. Each change_record has the following form:

ldapmodify and ldapadd

126 z/OS V1R4.0 Security Server LDAP Client Programming

|
|

distinguished_name
[+|-]{attrtype} ={value_line1[\
value_line2[\
...value_lineN]]}
.
.
.

Thus, a change_record consists of a line indicating the distinguished name of the directory entry to be
modified along with one or more attribute modification lines. Each attribute modification line consists of an
optional add or delete indicator, an attribute type, and an attribute value. If a plus sign (+) is specified, then
the modification type is set to add . If a hyphen (-) is specified then the modification type is set to delete .
For a delete modification the equal sign (=) and value should be omitted to remove an entire attribute. If
the add or delete indicator is not specified, then the modification type is set to add unless the -r option is
used, in which case the modification type is set to replace . Any leading or trailing white-space characters
are removed from attribute values. If trailing white-space characters are required for attribute values, then
the LDIF mode of input must be used. Lines are continued using a backslash (\) as the last character of
the line. If a line is continued, the backslash character is removed and the succeeding line is appended
directly after the character preceding the backslash character. The new-line character at the end of the
input line is not retained as part of the attribute value.

Multiple attribute values are specified using multiple attrtype=value specifications.

Modify mode examples : Here are some examples of valid input for the ldapmodify command using
modify mode.

Adding a new entry:
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
cn=Tim Doe
sn=Doe
objectclass=organizationalperson
objectclass=person
objectclass=top

This example adds a new entry into the directory using name cn=Tim Doe, ou=Your Department, o=Your
Company, c=US.

Adding a new attribute type:
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
+telephonenumber=888 555 1234
+registeredaddress=td@yourcompany.com
+registeredaddress=ttd@yourcompany.com

This example adds two new attribute types to the existing entry. Note that the registeredaddress attribute
is assigned two values.

Replacing attribute values:
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
telephonenumber=888 555 4321
registeredaddress: tim@yourcompany.com
registeredaddress: timtd@yourcompany.com

Assuming that the command invocation was:
ldapmodify -r ...

this example replaces the attribute values for the telephonenumber and registeredaddress attributes
with the specified attribute values. If the -r command line option was not specified, then the attribute
values are added to the existing set of attribute values.

ldapmodify and ldapadd

Chapter 3. LDAP operation utilities 127

Deleting an attribute type:
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
-registeredaddress=tim@yourcompany.com

This example deletes a single registeredaddress attribute value from the existing entry.

Adding an attribute:
cn=Tim Doe, ou=Your Department, o=Your Company, c=US
+description=This is a very long attribute \
value that is continued on a second line. \
Note the backslash at the end of the line to \
be continued in order to signify that \
the line is continued.

This example adds a description attribute. The description attribute value spans multiple lines.

Examples
Following are some ldapmodify and ldapadd examples. In these examples, replace the bind DN (binddn)
and bind password (bindpw) with an identity with appropriate authority for your installation.

v Assuming that the file /tmp/entrymods exists and has the contents:
dn: cn=Modify Me, o=My Company, c=US
changetype: modify
replace: mail
mail: modme@MyCompany.com
-
add: title
title: Vice President
-
add: jpegPhoto
jpegPhoto: /tmp/modme.jpeg
-
delete: description
-

the command:
ldapmodify -b -r -f /tmp/entrymods

replaces the contents of the Modify Me entry’s mail attribute with the value modme@MyCompany.com, adds
a title of Vice President, adds the contents of the file /tmp/modme.jpeg as a jpegPhoto , and
completely removes the description attribute. The same modifications as above can be performed
using the older ldapmodify input format:
cn=Modify Me, o=My Company, c=US
mail=modme@MyCompany.com
+title=Vice President
+jpegPhoto=/tmp/modme.jpeg
-description

v Assuming that the file /tmp/newentry exists and has the contents:
dn: cn=Joe Smith, o=My Company, c=US
objectClass: person
cn: Joseph Smith
cn: Joe Smith
sn: Smith
title: Manager
mail: jsmith@jsmith.MyCompany.com
uid: jsmith

the command:
ldapadd -f /tmp/newentry

ldapmodify and ldapadd

128 z/OS V1R4.0 Security Server LDAP Client Programming

|
|

adds a new entry for Joe Smith, using the values from the file /tmp/newentry .

v Assuming that the file /tmp/newentry exists and has the contents:
dn: cn=Joe Smith, o=My Company, c=US
changetype: delete

the command:
ldapmodify -f /tmp/newentry

removes Joe Smith’s entry.

v Assuming hostA contains the referral object:
dn: o=ABC,c=US
ref: ldap://hostB:390/o=ABC,c=US
objectclass: referral

and hostB contains the organization object:
dn: o=ABC,c=US
o: ABC
objectclass: organization
telephoneNumber: 123-4567

and the file /tmp/refmods contains:
dn: o=ABC,c=US
changetype: modify
replace: ref
ref: ldap://hostB:391/o=ABC,c=US
-

and the file /tmp/ABCmods contains:
dn: o=ABC,c=US
changetype: modify
add: telephoneNumber
telephoneNumber: 123-1111
-

the command:
ldapmodify -h hostA -r -V 3 -M -f /tmp/refmods

replaces the ref attribute value of the referral object o=ABC,c=US in hostA, changing the TCP port
address in the URL from 390 to 391.

The command:
ldapmodify -h hostB -p 391 -f /tmp/ABCmods

adds the telephoneNumber attribute value 123-1111 to o=ABC,c=US in hostB.

v Assuming that the file /tmp/schemamods exists and has the contents:
dn: cn=schema, o=My Company, c=US
-attributetypes=(1.2.1 NAME ’attr1’ DESC ’attribute type’ \

EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
+attributetypes=(1.2.1 NAME ’attr1’ DESC ’attribute type - obsoleted’ OBSOLETE \

EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
+attributetypes=(1.2.2 NAME ’attr2’ DESC ’new attribute type’ \

EQUALITY caseIgnoreMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
+ibmattributetypes=(1.2.2 ACCESS-CLASS normal)
-objectclasses=(4.5.6 NAME ’oc1’ DESC ’sample object class’ STRUCTURAL MUST (cn))
+objectclasses=(4.5.6 NAME ’oc1’ DESC ’sample object class’ STRUCTURAL MUST (cn) MAY (attr2))

the command:

ldapmodify and ldapadd

Chapter 3. LDAP operation utilities 129

ldapmodify -f /tmp/schemamods -h hostA -D binddn -w bindpw

obsoletes the attr1 attribute type definition by specifying the OBSOLETE keyword in the definition,
adds the attr2 attribute type definition and the associated IBM attribute type information, and modifies
the oc1 object class definition by adding the attr2 attribute type as a MAY attribute.

v Assuming that the file /tmp/newentry exists and has the contents:
dn: racfid=u1,profiletype=user,sysplex=sysplexa
objectclass: racfuser
objectclass: racfbasecommon
racfid: u1
racfdefaultgroup: racfid=g1,profiletype=group,sysplex=sysplexa
racfconnectgroupUACC: read
racfconnectgroupauthority: join

the command:
ldapadd -D racfid=admin1,profiletype=user,sysplex=sysplexa -w bindpw -f /tmp/newentry

creates a RACF user named u1, with join authority and update UACC in the group g1. It is assumed
that the z/OS LDAP support for RACF access suffix is sysplex=sysplexa and that admin1 has the RACF
authority to make this update to RACF.

In the following LDIF, the x on the replace: x line is a placeholder for the attribute name and allows
multiple attribute names and values to be replaced in a single operation. If the file /tmp/modentry
contains:
dn: racfid=u1,profiletype=user,sysplex=sysplexa
changetype: modify
replace: x
racfattributes: OPERATIONS
racfconnectgroupUACC: update

the command:
ldapmodify -D racfid=admin1,profiletype=user,sysplex=sysplexa -w bindpw -f /tmp/modentry

adds the racfattributes attribute to OPERATIONS and changes the racfconnectgroupUACC to update.

Notes
The LDAP_DEBUG environment variable may be used to set the debug level. For more information on
specifying the debug level using keywords, decimal, hexadecimal, and plus and minus syntax, see
“Tracing” on page 15.

If you are attempting a CRAM-MD5 authentication bind to an IBM Directory Server, see “CRAM-MD5
authentication to an IBM Directory Server” on page 117 for more information.

You can specify an LDAP URL for ldaphost on the -h parameter. See 58 for more information.

SSL/TLS note
See “SSL/TLS information for LDAP utilities” on page 116.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a diagnostic message being
written to standard error.

ldapmodify and ldapadd

130 z/OS V1R4.0 Security Server LDAP Client Programming

|

|

|
|

|

|
|

ldapmodrdn utility

Purpose
The ldapmodrdn utility is a shell-accessible interface to the ldap_rename API.

The ldapmodrdn utility opens a connection to an LDAP server, binds, and modifies the RDN of entries.
The entry information is read from standard input (<entryfile), from file through the use of the -f option, or
from the command-line pair dn and newrdn. The entries being renamed may be either leaf entries or
non-leaf entries, and entire subtrees may be relocated in the directory with the command-line -s option.

The ldapmodrdn utility is not supported by z/OS LDAP support for RACF access.

Format
ldapmodrdn [options] {-f file | < entryfile | dn newrdn }

Parameters
options

The following table shows the options you can use for the ldapmodrdn utility:

Table 7. ldapmodrdn options

Option Description

-? Print this text.

-V version Specify the LDAP protocol level the client should use. The value for version can be 2 or 3.
The default is 3.

-S method
or
-m method

Specify the bind method to use. You can use either -m or -S to indicate the bind method.

The default is SIMPLE. You can also specify GSSAPI to indicate a Kerberos Version 5 is
requested, EXTERNAL to indicate that a certificate (SASL external) bind is requested,
CRAM-MD5 to indicate that a SASL Challenge Response Authentication Mechanism bind is
requested, or DIGEST-MD5 to indicate a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must have a valid Kerberos
Ticket Granting Ticket in their credentials cache by using the Kerberos kinit command line
utility.

The EXTERNAL method requires a protocol level of 3. You must also specify -Z, -K, and -P
to use certificate bind. If there is more than one certificate in the key database file, use -N to
specify the certificate or the default certificate will be used.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U option must be
specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option must be specified.
The -D option can optionally be used to specify the authorization DN.

-c Continuous operation mode. Errors are reported, but ldapmodrdn will continue with
modifications. The default is to exit after reporting an error.

-n Show what would be done, but do not actually change entries. Useful for debugging in
conjunction with -v.

-r Remove old RDN values from the entry. Default is to keep old values.

-v Use verbose mode, with many diagnostics written to standard output.

-R Do not automatically follow referrals.

-M Manage referral objects as normal entries. This requires a protocol level of 3.

ldapmodrdn

Chapter 3. LDAP operation utilities 131

|

|
|
|
|

||
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

||

Table 7. ldapmodrdn options (continued)

Option Description

-d debuglevel Specify the level of debug messages to be created. The debug level is specified in the same
fashion as the debug level for the LDAP server. See Table 2 on page 16 for the possible
values for debuglevel. The default is no debug messages.

-D binddn Use binddn to bind to the LDAP directory. The binddn parameter should be a
string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option is the
authorization DN which will be used for making access checks. This directive is optional
when used in this manner.

-w passwd Use passwd as the password for simple, CRAM-MD5, and DIGEST-MD5 authentication. The
default is a NULL string.

-h ldaphost Specify the host on which the LDAP server is running. The default is the local host.

When the target host is a z/OS LDAP server operating in multi-server mode with dynamic
workload management enabled (see the configuring chapter in the z/OS: Security Server
LDAP Server Administration and Use for additional information about LDAP server operating
modes), the ldaphost value should be in the form group_name.sysplex_domain_name,
where group_name is the name of the sysplexGroupName identified in the server
configuration file and sysplex_domain_name is the name or alias of the sysplex domain in
which the target server operates.

-p ldapport Specify the TCP port where the LDAP server is listening. The default LDAP non-secure port
is 389 and the default LDAP secure port is 636.

-Z Use a secure connection to communicate with the LDAP server. Secure connections expect
the communication to begin with the SSL/TLS handshake.

The -K keyfile option or equivalent environment variable is required when the -Z option is
specified. The -P keyfilepw option is required when the -Z option is specified and the key file
specifies an HFS key database file. The -N keyfilelabel option must be specified if you wish
to use a certificate that is different than the default specified in the key database.

-K keyfile Specify the name of the System SSL key database file or RACF key ring. If this option is not
specified, this utility looks for the presence of the SSL_KEYRING environment variable with
an associated name.

System SSL assumes that the name specifies a key database file. If the name is not a
fully-qualified file name, then the current directory is assumed to contain the file. The key
database file must be a file and cannot be an MVS data set. If a corresponding file is not
found then the name is assumed to specify a RACF key ring.

See “SSL/TLS information for LDAP utilities” on page 116 for information on System SSL key
databases and RACF key rings.

This parameter is ignored if -Z is not specified.

-P keyfilepw Specify either the key database file password or the file specification for a System SSL
password stash file. When the stash file is used, it must be in the form file:// followed
immediately (no blanks) by the HFS file specification (for example,
file:///etc/ldap/sslstashfile). The stash file must be a file and cannot be an MVS data
set.

This parameter is ignored if -Z is not specified.

-N keyfilelabel Specify the label associated with the key in the System SSL key database or RACF key
ring.

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The userName is a short
name (for example, the uid attribute value) that will be used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

ldapmodrdn

132 z/OS V1R4.0 Security Server LDAP Client Programming

|

||
|

|
|
|

||
|

||
|

||
|

|
|
|
|

||
|
|

|
|
|
|

|
|

|

|

|
|

||
|

|

Table 7. ldapmodrdn options (continued)

Option Description

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind. This option is required
when multiple realms are passed from an LDAP server to a client as part of a DIGEST-MD5
challenge; otherwise, it is optional.

-s newSuperior Specify the DN of the new superior entry under which the renamed entry will be relocated.
The newSuperior argument may be the zero-length string (-s “”), if the destination server
accepts zero-length string newSuperior arguments on an LDAP Modify DN operations.

-l seconds Sends an IBMModifyDNTimelimitControl control with the operation request, substituting
seconds as the control value. The control criticality is set to TRUE. Refer to z/OS: Security
Server LDAP Server Administration and Use for a description of this control.

-a Sends an IBMModifyDNRealignDNAttributesControl control with the operation request.
The control criticality is set to TRUE. There is no control value. Refer to z/OS: Security
Server LDAP Server Administration and Use for a description of this control.

-f file
Read the entry rename information from file instead of from standard input or the command line (by
specifying dn and newrdn). Only the first pair of dn and newrdn values will be read from the file. All
others will be ignored. The newSuperior option may not be included in file; this option is only accepted
as a command-line option.

entryfile
Specify a file containing the old DN and new RDN on consecutive lines.

dn Specify the DN of the entry to change.

newrdn
Specify the new RDN for the entry.

Input format
If the command-line arguments dn and newrdn are given, newrdn replaces the RDN of the entry specified
by the DN, dn. Otherwise, the contents of file (or standard input if no -f flag is given) should consist of a
single pair of lines. The first line indicates the DN and the second line indicates the RDN.

Examples
Following is an ldapmodrdn example:

v Assuming that the file /tmp/entrymods exists and has the contents:
cn=Modify Me, o=My Company, c=US
cn=The New Me

the command:
ldapmodrdn -r -f /tmp/entrymods

changes the RDN from cn=Modify Me, o=My Company, c=US to cn=The New Me and removes the old RDN
cn=Modify Me, o=My Company, c=US.

v The command:
ldapmodrdn -r -l 30 “cn=Modify Me, o=My Company, c=US” “cn=The New Me"

changes the RDN from cn=Modify Me, o=My Company, c=US to cn=The New Me and removes the old RDN
cn=Modify Me, o=My Company, c=US. An IBMModifyDNTimelimitControl control will accompany the
operation request, specifying a time limit of 30 seconds.

v The command:
ldapmodrdn -l 30 -a -s "o=Some Other Company, c=US" "cn=Modify Me, o=My Company, c=US’ "cn=The New Me"

ldapmodrdn

Chapter 3. LDAP operation utilities 133

||
|
|

||
|
|

||
|
|

||
|
|

|
|
|
|

|
|

|

|

|
|
|

|

|

changes the RDN from cn=Modify Me, o=My Company, c=US to cn=The New Me and removes the old RDN
cn=Modify Me, o=My Company, c=US.

The renamed entry will be relocated beneath the new superior entry o=Some Other Company, c=US. If the
renamed entry is a non-leaf node, its subordinate entries will also be moved and renamed to reflect
their new locations in the directory hierarchy. An IBMModifyDNTimelimitControl control will accompany
the operation request, specifying a time limit of 30 seconds, and an
IBMModifyDNRealignDNAttributesControl control will accompany the operation request.

Notes
The LDAP_DEBUG environment variable may be used to set the debug level. For more information on
specifying the debug level using keywords, decimal, hexadecimal, and plus and minus syntax, see
“Tracing” on page 15.

You can specify an LDAP URL for ldaphost on the -h parameter. See 58 for more information.

If you are attempting a CRAM-MD5 authentication bind to an IBM Directory Server, see “CRAM-MD5
authentication to an IBM Directory Server” on page 117 for more information.

For clients using authenticated binds, the DNs in their identity mappings may change as a result of a
Modify DN operation which is performed concurrently with their session to the server, and this may affect
ACL processing which results in permission to access, or denial of access to, directory entries for which
they previously were permitted or denied access. The resolution for this situation is to unbind and rebind
so that identity processing uses the latest DNs.

SSL/TLS note
See “SSL/TLS information for LDAP utilities” on page 116.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a diagnostic message being
written to standard error.

ldapmodrdn

134 z/OS V1R4.0 Security Server LDAP Client Programming

|
|

|
|
|
|
|

|
|

|
|
|
|
|

ldapsearch utility

Purpose
The ldapsearch utility is a shell-accessible interface to the ldap_search routine.

The ldapsearch utility opens a connection to an LDAP server, binds, and performs a search using the
filter. If ldapsearch finds one or more entries, the attributes specified are retrieved and the entries and
values are printed to standard output.

Note: Use of the approximate filter (~=) is not supported on a z/OS LDAP Server.

Format
ldapsearch [options] filter [attributes...]

Parameters
options

The following table shows the options you can use for the ldapsearch utility:

Table 8. ldapsearch options

Option Description

-? Print this text.

-V version Specify the LDAP protocol level the client should use. The value for version can be 2 or 3.
The default is 3.

-S method
or
-m method

Specify the bind method to use. You can use either -m or -S to indicate the bind method.

The default is SIMPLE. You can also specify GSSAPI to indicate a Kerberos Version 5 is
requested, EXTERNAL to indicate that a certificate (SASL external) bind is requested,
CRAM-MD5 to indicate that a SASL Challenge Response Authentication Mechanism bind is
requested, or DIGEST-MD5 to indicate a SASL digest hash bind is requested.

The GSSAPI method requires a protocol level of 3 and the user must have a valid Kerberos
Ticket Granting Ticket in their credentials cache by using the Kerberos kinit command line
utility.

The EXTERNAL method requires a protocol level of 3. You must also specify -Z, -K, and -P
to use certificate bind. If there is more than one certificate in the key database file, use -N to
specify the certificate or the default certificate will be used.

The CRAM-MD5 method requires a protocol level of 3. The -D or -U option must be
specified.

The DIGEST-MD5 method requires a protocol level of 3. The -U option must be specified.
The -D option can optionally be used to specify the authorization DN.

-n Show what would be done, but do not actually perform the search. Useful for debugging in
conjunction with -v.

-v Run in verbose mode, with many diagnostics written to standard output.

-t Write retrieved values to a set of temporary files. This option assumes values are nontextual
(binary), such as jpegPhoto or audio . There is no character set translation performed on
the values.

-A Retrieve attributes only (no values). This is useful when you just want to see if an attribute is
present in an entry and are not interested in the specific values.

ldapsearch

Chapter 3. LDAP operation utilities 135

||
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

Table 8. ldapsearch options (continued)

Option Description

-B Do not suppress display of non-printable values. This is useful when dealing with values that
appear in alternate character sets such as ISO-8859.1. This option is implied by the -L
option.

-C Do not suppress display of printable non-ASCII values (similar to the -B option). Values are
displayed in the local codepage. The LANG environment variable must be set appropriately
in the shell so that the desired characters print. Note that the default LANG value of C
causes the desired characters not to print.

-L Display search results in LDIF format. This option also turns on the -B option, and causes
the -F option to be ignored.

-R Do not automatically follow referrals.

-M Manage referral objects as normal entries. This requires a protocol level of 3.

-d debuglevel Specify the level of debug messages to be created. The debug level is specified in the same
fashion as the debug level for the LDAP server. See Table 2 on page 16 for the possible
decimal values for debuglevel. The default is no debug messages.

-F sep Use sep as the field separator between attribute names and values. The default separator is
an equal sign (=), unless the -L flag has been specified, in which case this option is ignored.

-f file Read a series of lines from file, performing one LDAP search for each line. In this case, the
filter given on the command line is treated as a pattern where the first occurrence of %s is
replaced with a line from file. If file is a single hyphen (-) character, then the lines are read
from standard input.

-b searchbase Use searchbase as the starting point for the search instead of the default. If -b is not
specified, this utility examines the LDAP_BASEDN environment variable for a searchbase
definition.

If you are running in TSO, set the LDAP_BASEDN environment variable using LE runtime
environment variable _CEE_ENVFILE. See z/OS: C/C++ Programming Guide for more
information.

If you are running in the z/OS shell, simply export the LDAP_BASEDN environment
variable.

-s scope Specify the scope of the search. The scope should be one of base , one , or sub to specify a
base object, one-level, or subtree search. The default is sub .

-a deref Specify how alias dereferencing is done. The deref should be one of never , always ,
search , or find to specify that aliases are never dereferenced, always dereferenced,
dereferenced when searching, or dereferenced only when locating the base object for the
search. The default is to never dereference aliases.

-l timelimit Wait at most timelimit seconds for a search to complete. Also note the following:

v If a client has passed a limit, then the smaller value of the client value, and the value read
from slapd.conf will be used.

v If the client has not passed a limit, and has bound as the adminDN , then the limit will be
considered unlimited.

v If the client has not passed a limit, and has not bound as the adminDN , then the limit will
be that which was read from the slapd.conf file.

ldapsearch

136 z/OS V1R4.0 Security Server LDAP Client Programming

||

|

Table 8. ldapsearch options (continued)

Option Description

-z sizelimit Limit the results of the search to at most sizelimit entries. This makes it possible to place an
upper bound on the number of entries that are returned for a search operation. Also note the
following:

v If a client has passed a limit, then the smaller value of the client value, and the value read
from slapd.conf will be used.

v If the client has not passed a limit, and has bound as the adminDN , then the limit will be
considered unlimited.

v If the client has not passed a limit, and has not bound as the adminDN , then the limit will
be that which was read from the slapd.conf file.

v When accessing the z/OS LDAP support for RACF, the number of entries returned is
limited by the z/OS LDAP server. See the information about accessing RACF information
in z/OS: Security Server LDAP Server Administration and Use.

-D binddn Use binddn to bind to the LDAP directory. The binddn parameter should be a
string-represented DN. The default is a NULL string.

If the -S or -m option is equal to DIGEST-MD5 or CRAM-MD5, this option is the
authorization DN which will be used for making access checks. This directive is optional
when used in this manner.

-w passwd Use bindpasswd as the password for simple, CRAM-MD5, and DIGEST-MD5 authentication.
The default is a NULL string.

-h ldaphost Specify the host on which the LDAP server is running. The default is the local host.

When the target host is a z/OS LDAP server operating in multi-server mode with dynamic
workload management enabled (see the configuring chapter in z/OS: Security Server LDAP
Server Administration and Use for additional information about LDAP server operating
modes), the ldaphost value should be in the form group_name.sysplex_domain_name,
where group_name is the name of the sysplexGroupName identified in the server
configuration file and sysplex_domain_name is the name or alias of the sysplex domain in
which the target server operates.

-p ldapport Specify the TCP port where the LDAP server is listening. The default LDAP non-secure port
is 389 and the default LDAP secure port is 636.

-Z Use a secure connection to communicate with the LDAP server. Secure connections expect
the communication to begin with the SSL/TLS handshake.

The -K keyfile option or equivalent environment variable is required when the -Z option is
specified. The -P keyfilepw option is required when the -Z option is specified and the key file
specifies an HFS key database file. The -N keyfilelabel option must be specified if you wish
to use a certificate that is different than the default specified in the key database.

-K keyfile Specify the name of the System SSL key database file or RACF key ring. If this option is not
specified, this utility looks for the presence of the SSL_KEYRING environment variable with
an associated name.

System SSL assumes that the name specifies a key database file. If the name is not a
fully-qualified file name, then the current directory is assumed to contain the file. The key
database file must be a file and cannot be an MVS data set. If a corresponding file is not
found then the name is assumed to specify a RACF key ring.

See “SSL/TLS information for LDAP utilities” on page 116 for information on System SSL key
databases and RACF key rings.

This parameter is ignored if -Z is not specified.

ldapsearch

Chapter 3. LDAP operation utilities 137

||
|

|
|
|

||
|

||
|

||
|

|
|
|
|

||
|
|

|
|
|
|

|
|

|

Table 8. ldapsearch options (continued)

Option Description

-P keyfilepw Specify either the key database file password or the file specification for a System SSL
password stash file. When the stash file is used, it must be in the form file:// followed
immediately (no blanks) by the HFS file specification (for example,
file:///etc/ldap/sslstashfile). The stash file must be a file and cannot be an MVS data
set.

This parameter is ignored if -Z is not specified.

-N keyfiledn Specify the label associated with the key in the System SSL key database or RACF key
ring.

-U userName Specify the user name for CRAM-MD5 or DIGEST-MD5 binds. The userName is a short
name (for example, the uid attribute value) that will be used to perform bind authentication.

This option is required if the -S or -m option is set to DIGEST-MD5.

-g realmName Specify the realm name to use when doing a DIGEST-MD5 bind. This option is required
when multiple realms are passed from an LDAP server to a client as part of a DIGEST-MD5
challenge; otherwise, it is optional.

filter
Specify an IETF RFC 1558 compliant LDAP search filter. (See “ldap_search” on page 87 for more
information on filters.)

attributes
Specify a space-separated list of attributes to retrieve. If no attributes list is given, all are retrieved.

Output format
If one or more entries are found, each entry is written to standard output in the form:
Distinguished Name (DN)
attributename=value
attributename=value
attributename=value
...

Multiple entries are separated with a single blank line. If the -F option is used to specify a separator
character, it will be used instead of the equal sign (=). If the -t option is used, the name of a temporary file
is used in place of the actual value. If the -A option is given, only the attributename part is written.

Examples
Following are some ldapsearch examples. Each example makes the assumption that the LDAP server is
running on the local host and listening on the default LDAP port (389).

v The command:
ldapsearch -b "o=IBM University,c=US" "cn=karen smith" cn telephoneNumber

performs a subtree search using the search base "o=IBM University,c=US" for entries with a
commonName of karen smith. The commonName and telephoneNumber values are retrieved and
printed to standard output. The output might look something like this if two entries are found:
cn=Karen G Smith, ou=College of Engineering, o=IBM University, c=US
cn=Karen Smith
cn=Karen Grace Smith
cn=Karen G Smith
telephoneNumber=+1 313 555-9489

cn=Karen D Smith, ou=Information Technology Division, o=IBM University, c=US

ldapsearch

138 z/OS V1R4.0 Security Server LDAP Client Programming

||
|
|
|
|

|

|
|

||
|

|

||
|
|

cn=Karen Smith
cn=Karen Diane Smith
cn=Karen D Smith
telephoneNumber=+1 313 555-2277

v The command:
ldapsearch -b "o=IBM University,c=US" -t "uid=kds" jpegPhoto audio

performs a subtree search using the search base "o=IBM University,c=US" for entries with user ID of
kds. The jpegPhoto and audio values are retrieved and written to temporary files. The output might
look like this if one entry with one value for each of the requested attributes is found:
cn=Karen D Smith, ou=Information Technology Division, o=IBM University, c=US
audio=/tmp/ldapsearch-audio-a19924
jpegPhoto=/tmp/ldapsearch-jpegPhoto-a19924

v The command:
ldapsearch -L -s one -b "c=US" "o=university*" o description

performs a one-level search at the c=US level for all organizations whose organizationName begins
with university. Search results are displayed in the LDIF format. The organizationName and
description attribute values are retrieved and printed to standard output, resulting in output similar to
this:
dn: o=University of Alaska Fairbanks, c=US
o: University of Alaska Fairbanks
description: Preparing Alaska for a brave new tomorrow
description: leaf node only

dn: o=University of Colorado at Boulder, c=US
o: University of Colorado at Boulder
description: No personnel information
description: Institution of education and research

dn: o=University of Colorado at Denver, c=US
o: University of Colorado at Denver
o: UCD
o: CU/Denver
o: CU-Denver
description: Institute for Higher Learning and Research

dn: o=University of Florida, c=US
o: University of Florida
o: UFl
description: Shaper of young minds
...

v The command:
ldapsearch -h ushost -M -b "c=US" "objectclass=referral"

performs a subtree search for the c=US subtree within the server at host ushost (TCP port 389) and
returns all referral objects. Note that the search is limited to the single server. No referrals are followed
to other servers to find additional referral objects. The output might look something like this if two
referral objects are found:
o=IBM,c=US
objectclass=referral
ref=ldap://ibmhost:389/o=IBM,c=US

o=XYZ Company,c=US
objectclass=referral
ref=ldap://XYZhost:390/o=XYZ%20Company,c=US

v The command:
ldapsearch -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd

-b "profiletype=user,sysplex=sysplexa" "racfid=G*"

ldapsearch

Chapter 3. LDAP operation utilities 139

performs a search in the user subtree of the z/OS LDAP support for RACF access for the RACF users
whose names begin with G. Only the DN of each matching entry is displayed. The z/OS LDAP support
for RACF access suffix is assumed to be sysplex=sysplexa. The output might look like:
racfid=G\#126,profiletype=USER,sysplex=sysplexa
racfid=GDCEBLD,profiletype=USER,sysplex=sysplexa
racfid=GKUPERM,profiletype=USER,sysplex=sysplexa
racfid=GLDSRV,profiletype=USER,sysplex=sysplexa
...

To then retrieve the entire entry for one of the matching users, use the command:
ldapsearch -D racfid=admin1,profiletype=user,sysplex=sysplexa -w passwd

-b "racfid=gkuperm,profiletype=user,sysplex=sysplexa" "objectclass=*"

The results might look like:
racfid=GKUPERM,profiletype=USER,sysplex=sysplexa
objectclass=racfUser
objectclass=racfBaseCommon
racfid=GKUPERM
racfprogrammername=UNKNOWN
racfowner=racfid=SUSET1,profiletype=USER,sysplex=sysplexa
racfauthorizationdate=01.017
racfdefaultgroup=racfid=SYS1,profiletype=GROUP,sysplex=sysplexa
racfpasswordchangedate=00.000
racfpasswordinterval=186
racfattributes=NONE
racfrevokedate=NONE
racfresumedate=NONE
...

Searching a server’s root DSE
The command:
ldapsearch -h ushost -V 3 -s base -b "" "objectclass=*"

provides the root DSE (DSA-specific entries, where a DSA is a directory server) information for a server.
This request can be directed to servers supporting LDAP Version 3 protocol to obtain information about
support available in the server. Refer to IETF RFC 2251 Lightweight Directory Access Protocol (v3) for a
description of the information provided by the server. See z/OS: Security Server LDAP Server
Administration and Use for more information about root DSE and what the z/OS LDAP server returns.

Notes
The LDAP_DEBUG environment variable may be used to set the debug level. For more information on
specifying the debug level using keywords, decimal, hexadecimal, and plus and minus syntax, see
“Tracing” on page 15.

If you are attempting a CRAM-MD5 authentication bind to an IBM Directory Server see page 117 for more
information.

You can specify an LDAP URL for ldaphost on the -h parameter. See page 58 for more information.

SSL/TLS note
See “SSL/TLS information for LDAP utilities” on page 116.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a nonzero exit status and a diagnostic message being
written to standard error.

ldapsearch

140 z/OS V1R4.0 Security Server LDAP Client Programming

|
|

http://www.ietf.org/rfc/rfc2251.txt

Appendix A. LDAP header files

This section contains a description of the header files supplied with the LDAP client. These files are
located in the /usr/lpp/ldapclient/include directory. To include these files in your applications, enclose the
header file name within angle brackets in your source code. For example, to include the ldap.h header
file, use:
#include <ldap.h>

lber.h
The lber.h header file contains additional definitions for selected LDAP routines. It is included
automatically by the ldap.h header file. This header defines additional constants, types, and macros that
are used with the LDAP APIs.

Figure 2 shows the contents of the lber.h header file:

??=ifdef __COMPILER_VER__
??=pragma filetag ("IBM-1047")

??=endif

/*
* Licensed Materials - Property of IBM
* 5694-A01
* (C) Copyright IBM Corp. 1997, 1999
*
*/

/*
* Copyright (c) 1990 Regents of the University of Michigan.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of Michigan at Ann Arbor. The name of the
* University may not be used to endorse or promote products
* derived from this software without specific prior written
* permission. This software is provided ``as is’’ without express
* or implied warranty.
*/

#ifndef _LBER_H
#define _LBER_H

/* structure for returning a sequence of octet strings + length */
struct berval {

unsigned long bv_len;
char *bv_val;

};

typedef struct berelement BerElement;
#define NULLBER ((BerElement *) 0)

#endif /* _LBER_H */

Figure 2. lber.h header file

© Copyright IBM Corp. 1999, 2002 141

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

ldap.h
The ldap.h header file contains definitions for the LDAP routines. It is a mandatory include file for all
applications working with the LDAP APIs. This header defines constants, types, and macros that are used
with the interface.

Figure 3 shows the contents of the ldap.h header file:

??=ifdef __COMPILER_VER__
??=pragma filetag ("IBM-1047")

??=endif

/*
* Licensed Materials - Property of IBM
* 5694-A01
* (C) Copyright IBM Corp. 1997, 2002
*
*/

/*
* Copyright (c) 1990 Regents of the University of Michigan.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of Michigan at Ann Arbor. The name of the
* University may not be used to endorse or promote products
* derived from this software without specific prior written
* permission. This software is provided ``as is’’ without express
* or implied warranty.
*/

#ifndef _LDAP_H
#define _LDAP_H

#ifdef __cplusplus
extern "C" {

#endif

#ifdef _WIN32
#include <winsock.h>
#else
#include <sys/time.h>
#endif

#include <lber.h>

#define LDAP_VERSION2 2
#define LDAP_VERSION3 3
#ifdef LDAPV3
#define LDAP_VERSION LDAP_VERSION3
#else
#define LDAP_VERSION LDAP_VERSION2
#endif

#define LDAP_URL_PREFIX "ldap://"
#define LDAPS_URL_PREFIX "ldaps://"

/* For compatibility w/Netscape implementation of ldap_version(). */
#define LDAP_SECURITY_NONE 0

#define LDAP_PORT 389

Figure 3. ldap.h header file

ldap.h

142 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define LDAPS_PORT 636

#define LDAP_MAX_ATTR_LEN 100

/* possible result types a server can return */
#define LDAP_RES_BIND 0x61L /* application + constructed */
#define LDAP_RES_SEARCH_ENTRY 0x64L /* application + constructed */
#define LDAP_RES_SEARCH_RESULT 0x65L /* application + constructed */
#define LDAP_RES_MODIFY 0x67L /* application + constructed */
#define LDAP_RES_ADD 0x69L /* application + constructed */
#define LDAP_RES_DELETE 0x6bL /* application + constructed */
#define LDAP_RES_MODRDN 0x6dL /* application + constructed */
#define LDAP_RES_COMPARE 0x6fL /* application + constructed */
#define LDAP_RES_SEARCH_REFERENCE 0X73L /* application + constructed */
#define LDAP_RES_EXTENDED 0X78L /* application + constructed */
#define LDAP_EXTENDED_RES_NAME 0X8aL /* context specific+primitive */
#define LDAP_EXTENDED_RES_VALUE 0X8bL /* context specific+primitive */
#define LDAP_RES_REFERRAL 0Xa3L /* context specific+constructed */
#define LDAP_RES_ANY (-1L)

/* valid inputs for all flag of ldap_result */
#define LDAP_MSG_ONE 0x00 /* return one result */
#define LDAP_MSG_ALL 0x01 /* return all results */

/* authentication methods available */
#define LDAP_AUTH_SIMPLE 0x80L /* context specific+primitive */
#define LDAP_AUTH_SASL_30 0xa3L /* context specific+constructed */
#define LDAP_AUTH_SASL 0xa3L /* context specific+constructed */

/* search scopes */
#define LDAP_SCOPE_BASE 0x00
#define LDAP_SCOPE_ONELEVEL 0x01
#define LDAP_SCOPE_SUBTREE 0x02

/* bind constants */
#define LDAP_MECHANISM_EXTERNAL "EXTERNAL"
#define LDAP_MECHANISM_EXTERNAL_UTF8 "\x45\x58\x54\x45\x52\x4E\x41\x4C"
/* Kerberos V5 Mechanism */
#define LDAP_MECHANISM_GSSAPI "GSSAPI"
#define LDAP_MECHANISM_GSSAPI_UTF8 "\x47\x53\x53\x41\x50\x49"
/* CRAM-MD5 Mechanism */
#define LDAP_MECHANISM_CRAM "CRAM-MD5"
#define LDAP_MECHANISM_CRAM_UTF8 "\x43\x52\x41\x4D\x2D\x4D\x44\x35"
/* DIGEST-MD5 Mechanism */
#define LDAP_MECHANISM_DIGEST "DIGEST-MD5"
#define LDAP_MECHANISM_DIGEST_UTF8 "\x44\x49\x47\x45\x53\x54\x2D\x4D\x44\x35"

#define LDAP_SASL_SIMPLE ""

/* for modifications */
typedef struct ldapmod {

int mod_op;
#define LDAP_MOD_ADD 0x00
#define LDAP_MOD_DELETE 0x01
#define LDAP_MOD_REPLACE 0x02
#define LDAP_MOD_BVALUES 0x80

char *mod_type;
union {

char **modv_strvals;
struct berval **modv_bvals;

} mod_vals;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

struct ldapmod *mod_next;
} LDAPMod;

ldap.h

Appendix A. LDAP header files 143

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* Server Request Search Source Types */
#define LDAP_LSI_CONF_DNS 0 /* Config first, then DNS (def) */
#define LDAP_LSI_CONF_ONLY 1 /* Ccnfiguration file only */
#define LDAP_LSI_DNS_ONLY 2 /* DNS only */

/* Server Request Connection Types */
#define LDAP_LSI_UDP_TCP 0 /* UDP first, then TCP */
#define LDAP_LSI_UDP 1 /* Use UDP only */
#define LDAP_LSI_TCP 2 /* Use TCP only */

/* LDAP Server Types */
#define LDAP_LSI_MASTER 1 /* LDAP Master */
#define LDAP_LSI_REPLICA 2 /* LDAP Replica */

/* LDAP Server Security Types */
#define LDAP_LSI_NOSSL 1 /* Non-SSL */
#define LDAP_LSI_SSL 2 /* Secure Server */

/*
* options that can be set/gotten
*/
#define LDAP_OPT_SIZELIMIT 0x00
#define LDAP_OPT_TIMELIMIT 0x01
#define LDAP_OPT_REFERRALS 0x02
#define LDAP_OPT_DEREF 0x03
#define LDAP_OPT_RESTART 0x04
#define LDAP_OPT_REFHOPLIMIT 0x05
#define LDAP_OPT_DEBUG 0x06

#define LDAP_OPT_SSL_CIPHER 0x07
#define LDAP_OPT_SSL_TIMEOUT 0x08

#define LDAP_OPT_REBIND_FN 0x09
#define LDAP_OPT_SSL 0x0A
#define LDAP_OPT_PROTOCOL_VERSION 0x11
#define LDAP_OPT_SERVER_CONTROLS 0x12
#define LDAP_OPT_CLIENT_CONTROLS 0x13
#define LDAP_OPT_HOST_NAME 0x30
#define LDAP_OPT_ERROR_NUMBER 0x31
#define LDAP_OPT_ERROR_STRING 0x32
#define LDAP_OPT_EXT_ERROR 0x33

#define LDAP_OPT_UTF8_IO 0xE0
#define LDAP_OPT_SSL_CERTIFICATE_DN 0xE1

#define LDAP_OPT_V2_WIRE_FORMAT 0xE2
#define LDAP_OPT_DELEGATION 0xE3
/*
* option value to indicate that one-time (per process)
* SSL initialization should be avoided since the initialization
* was already done elsewhere in the application. (deprecated)
*/
#define LDAP_OPT_SSL_AVOIDSTATICINIT 0xE4 /* deprecated */
#define LDAP_OPT_DEBUG_STRING 0xE5

#define LDAP_OPT_LCS 0x0F

/* option value for no size limit or no time limit on searches */
#define LDAP_NO_LIMIT 0

/* option values for binary options */
#define LDAP_OPT_ON 0x01
#define LDAP_OPT_OFF 0x00

ldap.h

144 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define LDAP_OPT_V2_WIRE_FORMAT_ISO8859_1 0x00
#define LDAP_OPT_V2_WIRE_FORMAT_UTF8 0x01

/* option values for dereferencing aliases */
#define LDAP_DEREF_NEVER 0
#define LDAP_DEREF_SEARCHING 1
#define LDAP_DEREF_FINDING 2
#define LDAP_DEREF_ALWAYS 3

/* default limit on nesting of referrals */
#define LDAP_DEFAULT_REFHOPLIMIT 10

/* Debug levels */
#define LDAP_DEBUG_OFF 0x00000000
#define LDAP_DEBUG_TRACE 0x00000001
#define LDAP_DEBUG_PACKETS 0x00000002
#define LDAP_DEBUG_ARGS 0x00000004
#define LDAP_DEBUG_CONNS 0x00000008
#define LDAP_DEBUG_BER 0x00000010
#define LDAP_DEBUG_FILTER 0x00000020
#define LDAP_DEBUG_MESSAGE 0x00000040
#define LDAP_DEBUG_ACL 0x00000080
#define LDAP_DEBUG_STATS 0x00000100
#define LDAP_DEBUG_THREAD 0x00000200
#define LDAP_DEBUG_REPL 0x00000400
#define LDAP_DEBUG_PARSE 0x00000800
#define LDAP_DEBUG_PERFORMANCE 0x00001000
#define LDAP_DEBUG_RDBM 0x00002000
#define LDAP_DEBUG_REFERRAL 0x00004000
#define LDAP_DEBUG_ERROR 0x00008000
#define LDAP_DEBUG_SYSPLEX 0x00010000
#define LDAP_DEBUG_MULTISERVER 0x00020000
#define LDAP_DEBUG_LDAPBE 0x00040000
#define LDAP_DEBUG_STRBUF 0x00080000
#define LDAP_DEBUG_TDBM 0x00100000
#define LDAP_DEBUG_SCHEMA 0x00200000
#define LDAP_DEBUG_BE_CAPABILITIES 0x00400000
#define LDAP_DEBUG_CACHE 0x00800000
#define LDAP_DEBUG_ANY 0x7fffffff

/* options for SSL ciphers */
#define LDAP_SSL_RC4_MD5_EX "03"
#define LDAP_SSL_RC2_MD5_EX "06"
#define LDAP_SSL_RC4_SHA_US "05"
#define LDAP_SSL_RC4_MD5_US "04"
#define LDAP_SSL_DES_SHA_US "09" /* deprecated */
#define LDAP_SSL_DES_SHA_EX "09"
#define LDAP_SSL_3DES_SHA_US "0A"
#define LDAP_SSL_RSA_AES_128_SHA "2F"
#define LDAP_SSL_RSA_AES_256_SHA "35"
#define LDAP_SSL_CIPHERLIST "03060504090A352F"

/*
* possible error codes we can return. hex value decimal value
*/

#define LDAP_SUCCESS 0x00 /* 0 */
#define LDAP_OPERATIONS_ERROR 0x01 /* 1 */
#define LDAP_PROTOCOL_ERROR 0x02 /* 2 */
#define LDAP_TIMELIMIT_EXCEEDED 0x03 /* 3 */
#define LDAP_SIZELIMIT_EXCEEDED 0x04 /* 4 */
#define LDAP_COMPARE_FALSE 0x05 /* 5 */
#define LDAP_COMPARE_TRUE 0x06 /* 6 */
#define LDAP_STRONG_AUTH_NOT_SUPPORTED 0x07 /* 7 */
#define LDAP_STRONG_AUTH_REQUIRED 0x08 /* 8 */
#define LDAP_PARTIAL_RESULTS 0x09 /* 9 */

ldap.h

Appendix A. LDAP header files 145

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define LDAP_REFERRAL 0X0a /* 10 */
#define LDAP_ADMIN_LIMIT_EXCEEDED 0X0b /* 11 */
#define LDAP_UNAVAILABLE_CRITICAL_EXTENSION 0X0c /* 12 */
#define LDAP_CONFIDENTIALITY_REQUIRED 0x0d /* 13 */
#define LDAP_SASLBIND_IN_PROGRESS 0x0e /* 14 */

#define LDAP_NO_SUCH_ATTRIBUTE 0x10 /* 16 */
#define LDAP_UNDEFINED_TYPE 0x11 /* 17 */
#define LDAP_INAPPROPRIATE_MATCHING 0x12 /* 18 */
#define LDAP_CONSTRAINT_VIOLATION 0x13 /* 19 */
#define LDAP_TYPE_OR_VALUE_EXISTS 0x14 /* 20 */
#define LDAP_INVALID_SYNTAX 0x15 /* 21 */

#define LDAP_NO_SUCH_OBJECT 0x20 /* 32 */
#define LDAP_ALIAS_PROBLEM 0x21 /* 33 */
#define LDAP_INVALID_DN_SYNTAX 0x22 /* 34 */
#define LDAP_IS_LEAF 0x23 /* 35 */
#define LDAP_ALIAS_DEREF_PROBLEM 0x24 /* 36 */

#define LDAP_INAPPROPRIATE_AUTH 0x30 /* 48 */
#define LDAP_INVALID_CREDENTIALS 0x31 /* 49 */
#define LDAP_INSUFFICIENT_ACCESS 0x32 /* 50 */
#define LDAP_BUSY 0x33 /* 51 */
#define LDAP_UNAVAILABLE 0x34 /* 52 */
#define LDAP_UNWILLING_TO_PERFORM 0x35 /* 53 */
#define LDAP_LOOP_DETECT 0x36 /* 54 */

#define LDAP_NAMING_VIOLATION 0x40 /* 64 */
#define LDAP_OBJECT_CLASS_VIOLATION 0x41 /* 65 */
#define LDAP_NOT_ALLOWED_ON_NONLEAF 0x42 /* 66 */
#define LDAP_NOT_ALLOWED_ON_RDN 0x43 /* 67 */
#define LDAP_ALREADY_EXISTS 0x44 /* 68 */
#define LDAP_NO_OBJECT_CLASS_MODS 0x45 /* 69 */
#define LDAP_RESULTS_TOO_LARGE 0x46 /* 70 */

#define LDAP_AFFECTS_MULTIPLE_DSAS 0X47 /* 71 */

#define LDAP_OTHER 0x50 /* 80 */
#define LDAP_SERVER_DOWN 0x51 /* 81 */
#define LDAP_LOCAL_ERROR 0x52 /* 82 */
#define LDAP_ENCODING_ERROR 0x53 /* 83 */
#define LDAP_DECODING_ERROR 0x54 /* 84 */
#define LDAP_TIMEOUT 0x55 /* 85 */
#define LDAP_AUTH_UNKNOWN 0x56 /* 86 */
#define LDAP_FILTER_ERROR 0x57 /* 87 */
#define LDAP_USER_CANCELLED 0x58 /* 88 */
#define LDAP_PARAM_ERROR 0x59 /* 89 */
#define LDAP_NO_MEMORY 0x5a /* 90 */
#define LDAP_CONNECT_ERROR 0x5b /* 91 */
#define LDAP_NOT_SUPPORTED 0x5c /* 92 */
#define LDAP_CONTROL_NOT_FOUND 0x5d /* 93 */
#define LDAP_NO_RESULTS_RETURNED 0x5e /* 94 */
#define LDAP_MORE_RESULTS_TO_RETURN 0x5f /* 95 */

#define LDAP_URL_ERR_NOTLDAP 0x60 /* 96 */
#define LDAP_URL_ERR_NODN 0x61 /* 97 */
#define LDAP_URL_ERR_BADSCOPE 0x62 /* 98 */
#define LDAP_URL_ERR_MEM 0x63 /* 99 */

#define LDAP_CLIENT_LOOP 0x64 /* 100 */
#define LDAP_REFERRAL_LIMIT_EXCEEDED 0x65 /* 101 */

#define LDAP_SSL_ALREADY_INITIALIZED 0x70 /* 112 */
#define LDAP_SSL_INITIALIZE_FAILED 0x71 /* 113 */
#define LDAP_SSL_CLIENT_INIT_NOT_CALLED 0x72 /* 114 */
#define LDAP_SSL_PARAM_ERROR 0x73 /* 115 */

ldap.h

146 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define LDAP_SSL_HANDSHAKE_FAILED 0x74 /* 116 */
#define LDAP_SSL_GET_CIPHER_FAILED 0x75 /* 117 */
#define LDAP_SSL_NOT_AVAILABLE 0x76 /* 118 */

#define LDAP_NO_EXPLICIT_OWNER 0x80 /* 128 */
#define LDAP_NO_EXPLICIT_ACL 0x81 /* 129 */

#define LDAP_DNS_NO_SERVERS 0xC5 /* 197 */
#define LDAP_DNS_TRUNCATED 0xC6 /* 198 */
#define LDAP_DNS_INVALID_DATA 0xC7 /* 199 */
#define LDAP_DNS_RESOLVE_ERROR 0xC8 /* 200 */
#define LDAP_DNS_CONF_FILE_ERROR 0xC9 /* 201 */

/*
* This structure represents both ldap messages and ldap responses.
* These are really the same, except in the case of search responses,
* where a response has multiple messages.
*/

typedef struct ldapmsg LDAPMessage;
#define NULLMSG ((LDAPMessage *) NULL)

/*
* structure representing an ldap connection
*/

typedef struct ldap LDAP;

/*
* type for ldap_set_rebind_proc()
*/

typedef int (*LDAPRebindProc)(struct ldap *ld, char **dnp,
char **passwdp, int *authmethodp,
int freeit);

/*
* types for ldap URL handling
*/

typedef struct ldap_url_desc {
char *lud_host;
int lud_port;
char *lud_dn;
char **lud_attrs;
int lud_scope;
char *lud_filter;
char *lud_string; /* for internal use only */

#define LDAP_URL_OPT_SECURE 2
unsigned long lud_options;

} LDAPURLDesc;
#define NULLLDAPURLDESC ((LDAPURLDesc *)NULL)

typedef struct _LDAPVersion {
int sdk_version;
int protocol_version;
int SSL_version;
int security_level;
char ssl_max_cipher[65] ;
char ssl_min_cipher[65] ;

} LDAPVersion;

typedef struct _LDAPControl {
char *ldctl_oid;
struct berval ldctl_value;
int ldctl_iscritical;

} LDAPControl;

/*

ldap.h

Appendix A. LDAP header files 147

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* structure for LDAP Server Request
*/

typedef struct LDAP_Server_Request {
int search_source; /* Search DNS, Cache or both */
char *conf_filename; /* Configuratin file */
int reserved; /* Reserved, set to 0 */
char *service_key; /* Service identifier */
char *enetwork_domain; /* eNetwork domain name */
char **name_servers; /* Array of name servers */
char **dns_domains; /* Array of DNS domains */
int connection_type; /* Use UDP, TCP or both */
int connection_timeout; /* Connection timeout in seconds */
char *DN_filter; /* DN suffix filter */
char *proto_key; /* Symbolic protocol name */
unsigned char reserved2[60]; /* Reserved, set to 0 */

} LDAPServerRequest;

/*
* structure for LDAP Server Information
*/

typedef struct LDAP_Server_Info {
char *lsi_host; /* LDAP server’s hostname */
unsigned short lsi_port; /* LDAP port */
char *lsi_suffix; /* server suffix */
char *lsi_query_key; /* service_key[.enetwork_domain] */
char *lsi_dns_domain; /* publishing DNS domain */
int lsi_replica_type; /* master or replica */
int lsi_sec_type; /* SSL or non-SSL */
unsigned short lsi_priority; /* server priority */
unsigned short lsi_weight; /* load balancing weight */
char *lsi_vendor_info; /* vendor information */
char *lsi_info; /* LDAP info string */
struct LDAP_Server_Info *prev; /* linked list previous pointer */
struct LDAP_Server_Info *next; /* linked lsit next pointer */

} LDAPServerInfo;

/* Function prototypes */
#ifndef _NO_PROTO
#define LDAP_P(x) x
#else
#define LDAP_P(x) ()
#endif

int ldap_abandon (LDAP *ld, int msgid);
int ldap_abandon_ext (LDAP *ld, int msgid,

LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap_add (LDAP *ld, char *dn, LDAPMod **attrs);
int ldap_add_s (LDAP *ld, char *dn, LDAPMod **attrs);
int ldap_add_ext (LDAP *ld, char *dn, LDAPMod **attrs,

LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp);

int ldap_add_ext_s (LDAP *ld, char *dn, LDAPMod **attrs,
LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap_bind (LDAP *ld, char *who, char *passwd,
int authmethod);

int ldap_bind_s (LDAP *ld, char *who, char *cred,
int method);

int ldap_simple_bind (LDAP *ld, char *who, char *passwd);
int ldap_simple_bind_s (LDAP *ld, char *who, char *passwd);
void ldap_set_rebind_proc (LDAP *ld,

LDAPRebindProc rebindproc);
int ldap_compare (LDAP *ld, char *dn, char *attr,

ldap.h

148 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char *value);
int ldap_compare_s (LDAP *ld, char *dn, char *attr,

char *value);
int ldap_compare_ext (LDAP *ld, char *dn, char *attr,

struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp);

int ldap_compare_ext_s (LDAP *ld, char *dn, char *attr,
struct berval *bvalue,
LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap_delete (LDAP *ld, char *dn);
int ldap_delete_s (LDAP *ld, char *dn);
int ldap_delete_ext (LDAP *ld, char *dn,

LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp);

int ldap_delete_ext_s (LDAP * ld, char *dn,
LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap_result2error (LDAP *ld, LDAPMessage *r, int freeit);
char *ldap_err2string (int err);
void ldap_perror (LDAP *ld, char *s);
int ldap_get_errno (LDAP *ld);
int ldap_modify (LDAP *ld, char *dn, LDAPMod **mods);
int ldap_modify_s (LDAP *ld, char *dn, LDAPMod **mods);
int ldap_modify_ext (LDAP *ld, char *dn, LDAPMod **mods,

LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp);

int ldap_modify_ext_s (LDAP *ld, char *dn, LDAPMod **mods,
LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap_modrdn (LDAP *ld, char *dn, char *newrdn,
int deleteoldrdn);

int ldap_modrdn_s (LDAP *ld, char *dn, char *newrdn,
int deleteoldrdn);

LDAP *ldap_open (char *host, int port);
LDAP *ldap_init (char *defhost, int defport);
int ldap_set_option (LDAP *ld, int optionToSet,

void *optionValue);
int ldap_set_option_np (LDAP *ld, int optionToSet, ...);
int ldap_get_option (LDAP *ld, int optionToGet,

void *optionValue);
int ldap_version (LDAPVersion *version);
LDAPMessage *ldap_first_entry (LDAP *ld, LDAPMessage *chain);
LDAPMessage *ldap_next_entry (LDAP *ld, LDAPMessage *entry);
int ldap_count_entries (LDAP *ld, LDAPMessage *chain);
int ldap_get_entry_controls_np(LDAP *ld, LDAPMessage *entry,

LDAPControl ***serverctrlsp);
LDAPMessage *ldap_first_message (LDAP *ld, LDAPMessage *chain);
LDAPMessage *ldap_next_message (LDAP *ld, LDAPMessage *chain);
int ldap_count_messages (LDAP *ld, LDAPMessage *chain);
LDAPMessage *ldap_first_reference (LDAP *ld, LDAPMessage *res);
LDAPMessage *ldap_next_reference (LDAP *ld, LDAPMessage *res);
int ldap_count_references (LDAP *ld, LDAPMessage *result);
int ldap_parse_reference_np(LDAP *ld, LDAPMessage *ref,

char ***referralsp,
LDAPControl ***serverctrlsp,
int freeit);

char *ldap_get_dn (LDAP *ld, LDAPMessage *entry);
char **ldap_explode_dn (char *dn, int notypes);
char **ldap_explode_rdn (char *rdn, int notypes);
char *ldap_dn2ufn (char *dn);
char *ldap_first_attribute (LDAP *ld, LDAPMessage *entry,

BerElement **ber);

ldap.h

Appendix A. LDAP header files 149

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

char *ldap_next_attribute (LDAP *ld, LDAPMessage *entry,
BerElement *ber);

int ldap_count_attributes (LDAP *ld, LDAPMessage *entry);
char **ldap_get_values (LDAP *ld, LDAPMessage *entry,

char *target);
struct berval **ldap_get_values_len (LDAP *ld,

LDAPMessage *entry,
char *target);

int ldap_count_values (char **vals);
int ldap_count_values_len (struct berval **vals);
void ldap_value_free (char **vals);
void ldap_value_free_len (struct berval **vals);
int ldap_result (LDAP *ld, int msgid, int all,

struct timeval *timeout, LDAPMessage **result);
int ldap_msgfree (LDAPMessage *lm);
int ldap_msgid (LDAPMessage *res);
int ldap_msgtype (LDAPMessage *res);
int ldap_search (LDAP *ld, char *base, int scope, char *filter,

char **attrs, int attrsonly);
int ldap_search_s (LDAP *ld, char *base, int scope,

char *filter, char **attrs, int attrsonly,
LDAPMessage **res);

int ldap_search_st (LDAP *ld, char *base, int scope,
char *filter, char **attrs, int attrsonly,
struct timeval *timeout, LDAPMessage **res);

int ldap_search_ext (LDAP *ld, char *base, int scope, char *filter,
char **attrs, int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeoutp,
int sizelimit, int *msgidp);

int ldap_search_ext_s (LDAP *ld, char *base, int scope, char *filter,
char **attrs, int attrsonly,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct timeval *timeoutp,
int sizelimit,
LDAPMessage **res);

int ldap_unbind (LDAP *ld);
int ldap_unbind_s (LDAP *ld);
void ldap_mods_free (LDAPMod **mods, int freemods);
void ldap_control_free (LDAPControl *ctrl);
void ldap_controls_free (LDAPControl **ctrls);
void ldap_memfree (char *mem);
int ldap_is_ldap_url (char *url);
int ldap_url_parse (char *url, LDAPURLDesc **ludpp);
void ldap_free_urldesc (LDAPURLDesc *ludp);
int ldap_url_search (LDAP *ld, char *url, int attrsonly);
int ldap_url_search_s (LDAP *ld, char *url, int attrsonly,

LDAPMessage **res);
int ldap_url_search_st (LDAP *ld, char *url, int attrsonly,

struct timeval *timeout, LDAPMessage **res);

int ldap_set_cipher(LDAP *ld, char *userString);

int ldap_ssl_start (LDAP *ld, char *keyfile, char *keyfile_pw,
char *keyfile_dn);

int ldap_ssl_client_init (char *keyfile, char *keyfile_pw,
int sslTimeout, int *pSSLReasonCode);

LDAP *ldap_ssl_init (char *host, int port, char *keyfile_dn);

int ldap_sasl_bind (LDAP *ld, char *dn, char *mechansim,
struct berval *credentials,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int* msgidp);

ldap.h

150 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int ldap_sasl_bind_s (LDAP *ld, char* dn, char *mechansim,
struct berval *credentials,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **servercredp);

int ldap_rename (LDAP* ld, char *dn, char *newdn, char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls, LDAPControl **clientctrls,
int *msgidp);

int ldap_rename_s (LDAP* ld,char *dn, char *newdn, char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap_parse_result (LDAP* ld, LDAPMessage *result, int *errcodep,
char **matcheddnp, char **errmsgp,
char ***referralsp, LDAPControl ***serverctrlsp,
int freeint);

int ldap_parse_sasl_bind_result (LDAP* ld, LDAPMessage *result,
struct berval **servercredp,
int freeit);

int ldap_parse_extended_result(LDAP *ld, LDAPMessage *res,
char **resultoidp,
struct berval **resultdata,
int freeit);

int ldap_extended_operation(LDAP *ld, const char* exoid,
const struct berval* exdata,
LDAPControl **serverctrls,
LDAPControl** clientctrls, int* msgidp);

int ldap_extended_operation_s(LDAP *ld, const char* exoid,
const struct berval* exdata,
LDAPControl **serverctrls,
LDAPControl** clientctrls, char **retoidp,
struct berval **retdatap);

int ldap_server_locate (LDAPServerRequest *server_request,
LDAPServerInfo **server_info_listpp);

int ldap_server_free_list (LDAPServerInfo *server_info_listp);
int ldap_server_conf_save (char *basename, unsigned long ttl,

LDAPServerInfo *server_info_listp);

int ldap_enetwork_domain_set (char *name, char *filename);
int ldap_enetwork_domain_get (char **name, char *filename);

/*
* client-side search entry cache functions
*/

typedef struct ClientCache LDAPMemCache;

/*
* The following definition of ldap_thread_fns is provided for
* compilation compatibility with the caching APIs defined by
* other SDKs. This structure (if specified) is NOT USED by the
* z/OS implementation; all cache access serialization is performed
* internally by the cache code itself.
*/

typedef void *(LDAP_TF_MUTEX_ALLOC_CALLBACK)(void);
typedef void (LDAP_TF_MUTEX_FREE_CALLBACK)(void *);
typedef int (LDAP_TF_MUTEX_LOCK_CALLBACK)(void *);
typedef int (LDAP_TF_MUTEX_UNLOCK_CALLBACK)(void *);
typedef int (LDAP_TF_GET_ERRNO_CALLBACK)(void);
typedef void (LDAP_TF_SET_ERRNO_CALLBACK)(int);
typedef int (LDAP_TF_GET_LDERRNO_CALLBACK)(char **, char **, void *);
typedef void (LDAP_TF_SET_LDERRNO_CALLBACK)(int, char *, char *,

void *);

ldap.h

Appendix A. LDAP header files 151

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

typedef struct _ldap_thread_fns {
LDAP_TF_MUTEX_ALLOC_CALLBACK *ltf_mutex_alloc;
LDAP_TF_MUTEX_FREE_CALLBACK *ltf_mutex_free;
LDAP_TF_MUTEX_LOCK_CALLBACK *ltf_mutex_lock;
LDAP_TF_MUTEX_UNLOCK_CALLBACK *ltf_mutex_unlock;
LDAP_TF_GET_ERRNO_CALLBACK *ltf_get_errno;
LDAP_TF_SET_ERRNO_CALLBACK *ltf_set_errno;
LDAP_TF_GET_LDERRNO_CALLBACK *ltf_get_lderrno;
LDAP_TF_SET_LDERRNO_CALLBACK *ltf_set_lderrno;
void *ltf_lderrno_arg;

} ldap_thread_fns ;

void ldap_memcache_update(LDAPMemCache *cache);
int ldap_memcache_set(LDAP *ld, LDAPMemCache *cache);
int ldap_memcache_init(unsigned long ttl, unsigned long size,

char **baseDNs, ldap_thread_fns *reserved,
LDAPMemCache **cachep);

int ldap_memcache_get(LDAP *ld, LDAPMemCache **cachep);
void ldap_memcache_flush(LDAPMemCache *cache, char *dn, int scope);
void ldap_memcache_destroy(LDAPMemCache *cache);

/*
* Numeric OIDs for supported CLIENT controls
*/

/*
* ibm-serverHandledSearchRequest client control numeric oid
*/
#define IBM_SERVER_HANDLED_SEARCH_REQUEST_OID "1.3.18.0.2.10.7"
/*
* ibm-serverHandledSearchRequest client control numeric oid represented in
* UTF-8 (for use with the LDAP_OPT_UTF8_IO setting)
*/
#define IBM_SERVER_HANDLED_SEARCH_REQUEST_OID_UTF8 \

"\x31\x2E\x33\x2E\x31\x38\x2E\x30\x2E\x32\x2E\x31\x30\x2E\x37"

/*
* ibm-saslBindDigestRealmName and ibm-saslBindCramRealmName
* client control numeric oid
*/
#define IBM_CLIENT_MD5_REALM_NAME_OID "1.3.18.0.2.10.12"

/*
* ibm-saslBindDigestRealmName and ibm-saslBindCramRealmName
* client control numeric oid represented in
* UTF-8 (for use with the LDAP_OPT_UTF8_IO setting)
*/
#define IBM_CLIENT_MD5_REALM_NAME_OID_UTF8 \

"\x31\x2E\x33\x2E\x31\x38\x2E\x30\x2E\x32\x2E\x31\x30\x2E\x31\x32"

/*
* ibm-saslBindDigestUserName and ibm-saslBindCramUserName
* client control numeric oid
*/
#define IBM_CLIENT_MD5_USER_NAME_OID "1.3.18.0.2.10.13"

/*
* ibm-saslBindDigestUserName and ibm-saslBindCramUserName
* client control numeric oid represented in
* UTF-8 (for use with the LDAP_OPT_UTF8_IO setting)
*/
#define IBM_CLIENT_MD5_USER_NAME_OID_UTF8 \

"\x31\x2E\x33\x2E\x31\x38\x2E\x30\x2E\x32\x2E\x31\x30\x2E\x31\x33"

ldap.h

152 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* IBMModifyDNTimelimitControl OID */
#define MODDN_TIMELIMIT_OID_STR "1.3.18.0.2.10.10"

/*
* IBMModifyDNTimelimitControl OID
* client control numeric oid represented in
* UTF-8 (for use with the LDAP_OPT_UTF8_IO setting)
*/
#define MODDN_TIMELIMIT_OID_STR_UTF8 \

"\x31\x2E\x33\x2E\x31\x38\x2E\x30\x2E\x32\x2E\x31\x30\x2E\x31\x30"

/* IBMModifyDNRealignDNAttributesControl OID */
#define MODDN_REALIGN_DNATTR_OID_STR "1.3.18.0.2.10.11"

/*
* IBMModifyDNRealignDNAttributesControl OID
* client control numeric oid represented in
* UTF-8 (for use with the LDAP_OPT_UTF8_IO setting)
*/
#define MODDN_REALIGN_DNATTR_OID_STR_UTF8 \

"\x31\x2E\x33\x2E\x31\x38\x2E\x30\x2E\x32\x2E\x31\x30\x2E\x31\x31"

/*
* BER encoded TRUE and FALSE BOOLEAN values. These can be used
* to specify the ldctl_value.bv_val for client and server controls
* accepting a BER encoded BOOLEAN value (for example: the
* ibm-serverHandledSearchRequest client control)
*/
#define BER_ENCODED_BOOLEAN_FALSE "\x30\x03\x01\x01\x00"
#define BER_ENCODED_BOOLEAN_TRUE "\x30\x03\x01\x01\xFF"

#ifdef __cplusplus
}
#endif

#endif /* _LDAP_H */

ldap.h

Appendix A. LDAP header files 153

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

ldapssl.h
The ldapssl.h header file contains definitions for the LDAP SSL routines. It is an include for all
applications working with the LDAP SSL APIs. This header defines constants that are used with this
interface.

Figure 4 shows the contents of the ldapssl.h header file:

??=ifdef __COMPILER_VER__
??=pragma filetag ("IBM-1047")

??=endif

/*
* Licensed Materials - Property of IBM
* 5694-A01
* (C) Copyright IBM Corp. 1997, 2002
*
*/

#ifndef _LDAPSSL_H
#define _LDAPSSL_H

/*
SSL Reason Codes. The #defines in this header map the
System SSL return codes to LDAP defined reason codes.

The following table documents the mapping between the SSL return codes
and the LDAP reason codes. Comments on the #define lines provide
brief descriptions of the error. In addition, SSL manuals provide
additional descriptions of the SSL return codes.

Note: LDAP reason code -99 is used to map unrecognized SSL return codes.
In this case, recreate the problem with LDAP Debug set to error.
A Debug error statement will indicate the SSL return code.

Note: In the table, "n/a" for the SSL Return Code Value indicates that
LDAP Reason is not applicable to a specific SSL return code. SSL
did not return an error that caused the LDAP reason code.

LDAP Reason SSL Return
Code Value Code Value LDAP Reason Code Name
----------- ---------- --

-1 402 LDAP_SSL_ERROR_NO_CIPHERS
-2 403 LDAP_SSL_ERROR_NO_CERTIFICATE
-6 405 LDAP_SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE
-10 406 LDAP_SSL_ERROR_IO
-11 410 LDAP_SSL_ERROR_BAD_MESSAGE
-12 411 LDAP_SSL_ERROR_BAD_MAC
-13 412 LDAP_SSL_ERROR_UNSUPPORTED
-14 413 LDAP_SSL_ERROR_BAD_CERT_SIG
-15 414 LDAP_SSL_ERROR_BAD_CERT
-16 415 LDAP_SSL_ERROR_BAD_PEER
-17 416 LDAP_SSL_ERROR_PERMISSION_DENIED
-18 417 LDAP_SSL_ERROR_SELF_SIGNED
-20 4 LDAP_SSL_ERROR_BAD_MALLOC
-21 5 LDAP_SSL_ERROR_BAD_STATE
-22 420 LDAP_SSL_ERROR_SOCKET_CLOSED
-40 421 LDAP_SSL_SOC_BAD_V2_CIPHER
-41 422 LDAP_SSL_SOC_BAD_V3_CIPHER
-99 12 or any LDAP_SSL_ERROR_UNKNOWN_ERROR

other unmapped
SSL rc

Figure 4. ldapssl.h header file

ldapssl.h

154 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-1000 n/a LDAP_SSL_DLL_LOAD_FAILED
-1001 n/a LDAP_SSL_ROUTINE_MISSING
-1002 n/a LDAP_SSL_LDAP_LOCKINIT_FAILED

1 102 LDAP_SSL_KEYFILE_IO_ERROR
2 202 LDAP_SSL_KEYFILE_OPEN_FAILED
4 408 LDAP_SSL_KEYFILE_BAD_PASSWORD
12 6, 407 LDAP_SSL_KEYFILE_BAD_LABEL
106 106 LDAP_SSL_BAD_FORMAT_OR_INVALID_PASSWORD
109 109 LDAP_SSL_KEYFILE_NO_CA_CERTIFICATES
201 201 LDAP_SSL_NO_KEYFILE_PASSWORD
203 203 LDAP_SSL_RSA_TEMP_KEY_PAIR
204 204 LDAP_SSL_KEYFILE_PASSWORD_EXPIRED
301 301 LDAP_SSL_CLOSE_FAILED
302 302 LDAP_SSL_CONNECTION_ACTIVE
401 401 LDAP_SSL_ERR_BAD_DATE
427 427 LDAP_SSL_ERR_LDAP_NOT_AVAILABLE
428 428 LDAP_SSL_ERR_NO_PRIVATE_KEY
429 429 LDAP_SSL_ERR_INVALID_V2_HEADER
432 432 LDAP_SSL_ERR_NO_NEGOTIATION
433 433 LDAP_SSL_ERR_EXPORT_RESTRICTION
434 434 LDAP_SSL_ERR_INCOMPATIBLE_KEY
435 435 LDAP_SSL_ERR_UNKNOWN_CA
436 436 LDAP_SSL_ERR_BAD_CRL
437 437 LDAP_SSL_ERR_CONNECTION_CLOSED
438 438 LDAP_SSL_ERR_INTERNAL_ERROR_ALERT
439 439 LDAP_SSL_ERR_UNKNOWN_ALERT
501 501 LDAP_SSL_INVALID_BUFFER_SIZE
502 502 LDAP_SSL_WOULD_BLOCK
503 503 LDAP_SSL_WOULD_BLOCK_READ
504 504 LDAP_SSL_WOULD_BLOCK_WRITE
505 505 LDAP_SSL_ERR_RECORD_OVERFLOW
601 601 LDAP_SSL_ERR_NOT_SSLV3
602 602 LDAP_SSL_MISC_INVALID_ID
701 701 LDAP_SSL_ATTRIBUTE_INVALID_ID
702 702 LDAP_SSL_ATTRIBUTE_INVALID_LENGTH
704 704 LDAP_SSL_ATTRIBUTE_INVALID_SID_CACHE
703 703 LDAP_SSL_ATTRIBUTE_INVALID_ENUMERATION
705 705 LDAP_SSL_ATTRIBUTE_INVALID_NUMERIC_VALUE
706 706 LDAP_SSL_ATTRIBUTE_INVALID_PARAMETER

10001 1 LDAP_SSL_INVALID_HANDLE
10003 3 LDAP_SSL_INTERNAL_ERROR
10007 7 LDAP_SSL_CERTIFICATE_NOT_AVAILABLE
10008 8 LDAP_SSL_CERT_VALIDATION
10009 9 LDAP_SSL_ERR_CRYPTO
10010 10 LDAP_SSL_ERR_ASN
10011 11 LDAP_SSL_ERR_LDAP
10103 103 LDAP_SSL_KEYFILE_INVALID_FORMAT

These reason codes can be returned in the ldap_ssl_client_init() API
reason code field, by ldap_get_option() with LDAP_OPT_EXTERROR to get a
more detailed error when an SSL error occurs, and by messages from the
LDAP server.

*/

#define LDAP_SSL_OK 0 /* Successful Completion */
#define LDAP_SSL_INITIALIZE_OK 0 /* Successful Completion */
#define LDAP_SSL_KEYFILE_IO_ERROR 1 /* Keyring I/O error */
#define LDAP_SSL_KEYFILE_OPEN_FAILED 2 /* Keyring open error */
#define LDAP_SSL_KEYFILE_BAD_FORMAT 3 /* Keyring format bad */
#define LDAP_SSL_KEYFILE_BAD_PASSWORD 4 /* Keyring PW is incorrect*/
#define LDAP_SSL_KEYFILE_BAD_MALLOC 5 /* OBSOLETE */
#define LDAP_SSL_KEYFILE_NOTHING_TO_WRITE 6 /* OBSOLETE */
#define LDAP_SSL_KEYFILE_WRITE_FAILED 7 /* OBSOLETE */
#define LDAP_SSL_KEYFILE_NOT_FOUND 8 /* OBSOLETE */
#define LDAP_SSL_KEYFILE_BAD_DNAME 9 /* Distinguished name bad */
#define LDAP_SSL_KEYFILE_BAD_KEY 10 /* OBSOLETE */

ldapssl.h

Appendix A. LDAP header files 155

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define LDAP_SSL_KEYFILE_KEY_EXISTS 11 /* OBSOLETE */
#define LDAP_SSL_KEYFILE_BAD_LABEL 12 /* Keyfile label is not

valid, OR certificate
is not trusted */

#define LDAP_SSL_KEYFILE_DUPLICATE_NAME 13 /* Key database contains
multiple certificates
with the same subject
name as the
distinguished name
specified in the
connection init data */

#define LDAP_SSL_KEYFILE_DUPLICATE_KEY 14 /* OBSOLETE */
#define LDAP_SSL_KEYFILE_DUPLICATE_LABEL 15 /* OBSOLETE */
#define LDAP_SSL_ERR_INIT_PARM_NOT_VALID 100 /* Initialization Parm is

not valid */
#define LDAP_SSL_INIT_HARD_RT 101 /* No keyring file

or password */
#define LDAP_SSL_INIT_SEC_TYPE_NOT_VALID 102 /* Security type bad */
#define LDAP_SSL_INIT_V2_TIMEOUT_NOT_VALID 103 /* V2 timeout value bad */
#define LDAP_SSL_INIT_V3_TIMEOUT_NOT_VALID 104 /* V3 timeout value bad */
#define LDAP_SSL_KEYFILE_CERT_EXPIRED 105 /* OBSOLETE */
#define LDAP_SSL_BAD_FORMAT_OR_INVALID_PASSWORD 106 /* Key database file is

corrupted */
#define LDAP_SSL_KEYFILE_NO_CA_CERTIFICATES 109 /* The key database or

SAF key ring does not
contain any valid
certification authority
certificates. */

#define LDAP_SSL_NO_KEYFILE_PASSWORD 201 /* Key database PW or stash
file name not set. */

#define LDAP_SSL_RSA_TEMP_KEY_PAIR 203 /* Unable to generate
temporary RSA
public/private key pair*/

#define LDAP_SSL_KEYFILE_PASSWORD_EXPIRED 204 /* key database password
is expired. */

#define LDAP_SSL_CLOSE_FAILED 301 /* Close failed */
#define LDAP_SSL_CONNECTION_ACTIVE 302 /* Connection has an

active write */
#define LDAP_SSL_ERR_BAD_DATE 401 /* Validity time period

for the certificate
has expired. */

#define LDAP_SSL_ERR_LDAP_NOT_AVAILABLE 427 /* Unable to access the
specified LDAP
directory, should not
occur. */

#define LDAP_SSL_ERR_NO_PRIVATE_KEY 428 /* The specified key did
not contain a private
key. */

#define LDAP_SSL_ERR_INVALID_V2_HEADER 429 /* SSL V2 header is not
valid */

#define LDAP_SSL_ERR_CERTIFICATE_REVOKED 431 /* Certificate has been
revoked by the
certification authority*/

#define LDAP_SSL_ERR_NO_NEGOTIATION 432 /* Session renegotiation
is not allowed */

#define LDAP_SSL_ERR_EXPORT_RESTRICTION 433 /* Key exceeds allowable
export size */

#define LDAP_SSL_ERR_INCOMPATIBLE_KEY 434 /* Certificate key is not
compatible with the
negotiated cipher
suite */

#define LDAP_SSL_ERR_UNKNOWN_CA 435 /* A certification
authority certificate
is missing */

#define LDAP_SSL_ERR_BAD_CRL 436 /* Certificate revocation
list cannot be
processed. */

ldapssl.h

156 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define LDAP_SSL_ERR_CONNECTION_CLOSED 437 /* A close notification
alert has been sent
for the connection */

#define LDAP_SSL_ERR_INTERNAL_ERROR_ALERT 438 /* Internal error reported
by remote partner */

#define LDAP_SSL_ERR_UNKNOWN_ALERT 439 /* Unknown alert received
from remote partner */

#define LDAP_SSL_INVALID_BUFFER_SIZE 501 /* The buffer size is
negative or zero. */

#define LDAP_SSL_WOULD_BLOCK 502 /* Used with non-blocking
I/O. */

#define LDAP_SSL_WOULD_BLOCK_READ 503 /* Read would be blocked;
Used w/ blocking I/O. */

#define LDAP_SSL_WOULD_BLOCK_WRITE 504 /* Write would be blocked;
Used w/blocking I/O. */

#define LDAP_SSL_ERR_RECORD_OVERFLOW 505 /* Record overflow */
#define LDAP_SSL_ERR_NOT_SSLV3 601 /* Session is not using

the SSL V3 or TLS V1
protocol. This should
not occur. */

#define LDAP_SSL_MISC_INVALID_ID 602 /* Function identifier is
not valid */

#define LDAP_SSL_ATTRIBUTE_INVALID_ID 701 /* Attribute ID is not
valid. */

#define LDAP_SSL_ATTRIBUTE_INVALID_LENGTH 702 /* Attribute length is
not valid. */

#define LDAP_SSL_ATTRIBUTE_INVALID_ENUMERATION 703 /* Attribute enumeration
value is not valid. */

#define LDAP_SSL_ATTRIBUTE_INVALID_SID_CACHE 704 /* Setting of session ID
callback routines
requires all session
id routines to be
specified, should not
occur. */

#define LDAP_SSL_ATTRIBUTE_INVALID_NUMERIC_VALUE 705 /* Attribute value is
not valid. */

#define LDAP_SSL_ATTRIBUTE_INVALID_PARAMETER 706 /* Attribute parameter
value is not valid */

#define LDAP_SSL_INVALID_HANDLE 10001 /* Environment or SSL
handle not valid. */

#define LDAP_SSL_INTERNAL_ERROR 10003 /* Internal SSL error. */
#define LDAP_SSL_CERTIFICATE_NOT_AVAILABLE 10007 /* Certificate not received

from partner. */
#define LDAP_SSL_CERT_VALIDATION 10008 /* Certificate validation

error */
#define LDAP_SSL_ERR_CRYPTO 10009 /* Error processing

cryptography */
#define LDAP_SSL_ERR_ASN 10010 /* Error validating ASN.1

fields in certificate. */
#define LDAP_SSL_ERR_LDAP 10011 /* Error connecting to LDAP

server. This should
not occur */

#define LDAP_SSL_KEYFILE_INVALID_FORMAT 10103 /* The database is not a
key database */

#define LDAP_SSL_ERROR_NO_CIPHERS -1 /* No ciphers matched
the server and clients
lists of acceptable
ciphers */

#define LDAP_SSL_ERROR_NO_CERTIFICATE -2 /* No client certificate
is to be used. */

#define LDAP_SSL_ERROR_BAD_CERTIFICATE -4 /* OBSOLETE */
#define LDAP_SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE -6 /* The certificate

type is not
supported by
System SSL */

#define LDAP_SSL_ERROR_IO -10 /* I/O error communicating
with peer application */

ldapssl.h

Appendix A. LDAP header files 157

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define LDAP_SSL_ERROR_BAD_MESSAGE -11 /* Incorrectly-formatted
message received from
peer application */

#define LDAP_SSL_ERROR_BAD_MAC -12 /* Message verification
failed */

#define LDAP_SSL_ERROR_UNSUPPORTED -13 /* SSL protocol or
certificate type is
not supported */

#define LDAP_SSL_ERROR_BAD_CERT_SIG -14 /* Certificate signature
is not correct for a
certificate received
from the peer */

#define LDAP_SSL_ERROR_BAD_CERT -15 /* Certificate is not
valid */

#define LDAP_SSL_ERROR_BAD_PEER -16 /* Peer application has
violated the SSL
protocol */

#define LDAP_SSL_ERROR_PERMISSION_DENIED -17 /* Not authorized to access
key database or keyring*/

#define LDAP_SSL_ERROR_SELF_SIGNED -18 /* A self-signed certificate
cannot be validated */

#define LDAP_SSL_ERROR_BAD_MALLOC -20 /* Insufficient storage is
available */

#define LDAP_SSL_ERROR_BAD_STATE -21 /* The environment or
connection is not in
the open state */

#define LDAP_SSL_ERROR_SOCKET_CLOSED -22 /* Socket connection closed
by peer application */

#define LDAP_SSL_ERROR_LDAP_SSL_INITIALIZATION_FAILED -23 /* OBSOLETE */
#define LDAP_SSL_ERROR_HANDLE_CREATION_FAILED -24 /* OBSOLETE */
#define LDAP_SSL_SOC_BAD_V2_CIPHER -40 /* V2 cipher is not valid */
#define LDAP_SSL_SOC_BAD_V3_CIPHER -41 /* V3 cipher is not valid */
#define LDAP_SSL_SOC_BAD_SEC_TYPE -42 /* OBSOLETE */
#define LDAP_SSL_SOC_NO_READ_FUNCTION -43 /* OBSOLETE */
#define LDAP_SSL_SOC_NO_WRITE_FUNCTION -44 /* OBSOLETE */
#define LDAP_SSL_SOC_BAD_SEC_TYPE_COMBINATION -102 /* OBSOLETE */
#define LDAP_SSL_ERROR_UNKNOWN_ERROR -99 /* Unrecognized error */
#define LDAP_SSL_DLL_LOAD_FAILED -1000 /* Failed loading SSL’s

DLL */
#define LDAP_SSL_ROUTINE_MISSING -1001 /* Failed to locate an

SSL function */
#define LDAP_SSL_LDAP_LOCKINIT_FAILED -1002 /* Failed to initialize an

LDAP owned lock */

#endif /* _LDAPSSL_H */

ldapssl.h

158 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Appendix B. Sample Makefile

Following is a sample Makefile.

THIS FILE CONTAINS SAMPLE CODE. IBM PROVIDES THIS CODE ON AN
’AS IS’ BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
#
CFLAGS = -W0,DLL -Dmvs -D_OPEN_THREADS -DMVS_PTHREADS -D_ALL_SOURCE -DEBCDIC_PLATFORM -D_LONGMAP
CFLAGS +=-I/usr/include -I.
SIDEFILE=/usr/lib/GLDCLDAP.x
LIBS = $(SIDEFILE)
OBJS2 = line64.o
MODS = ldapsearch ldapdelete ldapmodify ldapmodrdn sdelete ldapadd
default: $(MODS)
ldapsearch: ldapsearch.o $(OBJS2)

c89 -o ldapsearch ldapsearch.o $(OBJS2) $(LIBS)
ldapdelete: ldapdelete.o

c89 -o ldapdelete ldapdelete.o $(LIBS)
ldapmodify: ldapmodify.o $(OBJS2)

c89 -o ldapmodify ldapmodify.o $(OBJS2) $(LIBS)
ldapmodrdn: ldapmodrdn.o

c89 -o ldapmodrdn ldapmodrdn.o $(OBJS2) $(LIBS)
sdelete: sdelete.o

c89 -o sdelete sdelete.o $(LIBS)
ldapadd: ldapmodify

ln -s ./ldapmodify ldapadd
clean:

rm -f *.o
clobber: clean

rm -f $(MODS)

Figure 5. Sample Makefile

© Copyright IBM Corp. 1999, 2002 159

|

|

Makefile

160 z/OS V1R4.0 Security Server LDAP Client Programming

Appendix C. Example programs

This appendix shows two example programs that use the LDAP programming interface.

The ldapdelete.c example program
The following example program (found in the /usr/lpp/ldap/examples directory) shows how the LDAP
programming interface can be used to interact with a Directory Service. This program can be used to
delete an entry from the Directory.

??=ifdef __COMPILER_VER__
??=pragma filetag ("IBM-1047")
??=endif

/***/
/* THIS FILE CONTAINS SAMPLE CODE. IBM PROVIDES THIS CODE ON AN */
/* ’AS IS’ BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS */
/* OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES */
/* OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
/***/

/*
* Copyright (c) 1995 Regents of the University of Michigan.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of Michigan at Ann Arbor. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is’’ without express or implied warranty.
*/

/* ldapdelete.c - simple program to delete an entry using LDAP */

#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <ldap.h>
#include <locale.h>

#define _XOPEN_SOURCE_EXTENDED 1
#include <signal.h> /* sigignore() */

#ifndef TRUE
#define TRUE 1

#endif

#ifndef FALSE
#define FALSE 0

#endif

static LDAP *ld;
static char *prog;
static char *binddn = NULL;
static char *passwd = NULL;
static char *ldaphost = "127.0.0.1";
static int ldapport = LDAP_PORT;
static int not = FALSE;
static int verbose = FALSE;
static int contoper = FALSE;

Figure 6. ldapdelete.c example program

© Copyright IBM Corp. 1999, 2002 161

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

static int follow_referrals = LDAP_OPT_ON;
static int deref = LDAP_DEREF_NEVER;
static int ldapversion = LDAP_VERSION3;
static int manageDsa = FALSE;
static LDAPControl manageDsaIT = {

"2.16.840.1.113730.3.4.2", /*OID*/
{ 0, NULL }, /*no value*/
LDAP_OPT_ON /*critical*/

};
static LDAPControl *M_controls[2] = { &manageDsaIT, NULL};

static void usage(char *s);
static int dodelete(LDAP *ld, char *dn);

#ifdef __cplusplus
extern "C" {
#endif
int rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp, int freeit);
int krb5_rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp, int

freeit);
#ifdef __cplusplus
}
#endif

main(int argc, char **argv)
{

char *optpattern = "nvRMZc?h:V:p:D:w:d:f:K:P:N:S:m:U:g:";
int ssl = FALSE;
char *keyfile = NULL, *keyfile_pw = NULL, *keyfile_dn = NULL;
char *p, buf[4096];
FILE * fp;
int i, rc=LDAP_SUCCESS, port = FALSE;
char *debugLevel = NULL;
int failureReasonCode ;
extern char *optarg;
extern int optind;
char *mechanism = NULL;
int sasl_bind = FALSE;
struct berval **servercred = NULL;
int host_named = FALSE;
int krb5_bind = FALSE;
char *username = NULL;
char *realmname = NULL;
struct berval cred;
int mand_auth_bind = FALSE;
LDAPControl *userControl = NULL;
LDAPControl *realmControl = NULL;
LDAPControl *md5_Controls[3];

setlocale(LC_ALL, "");

if (prog = strrchr(argv[0], ’/’)) { /* Strip off any path info
* on program name
*/

++prog;
}
else {

prog = argv[0];
}

sigignore(SIGPIPE); /* Ignore possible PIPE errors
generated by the sockets */

not = verbose = contoper = ssl = port = FALSE;
fp = NULL;

while ((i = getopt(argc, argv, optpattern)) != EOF) {
switch (i) {
case ’V’:

ldapdelete.c

162 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ldapversion = atoi(optarg);
if (ldapversion != LDAP_VERSION2 &&

ldapversion != LDAP_VERSION3) {
fprintf(stderr, "Incorrect version level supplied.\n");
fprintf(stderr, "Supported values for the -V parameter"

" are 2 and 3\n");
exit(1);

}
break ;

case ’c’: /* continue even if error encountered */
contoper = TRUE;
break;

case ’h’: /* ldap host */
ldaphost = strdup(optarg);
host_named = TRUE;
break;

case ’D’: /* bind DN */
binddn = strdup(optarg);
break;

case ’w’: /* password */
passwd = strdup(optarg);
break;

case ’f’: /* read DNs from a file */
if ((fp = fopen(optarg, "r")) == NULL) {

perror(optarg);
exit(1);

}
break;

case ’d’:
if ((debugLevel = strdup(optarg)) == NULL) {

fprintf(stderr, "Out of memory error encountered.\n");
exit(1);

}
else {

rc = ldap_set_option_np(NULL, LDAP_OPT_DEBUG_STRING, debugLevel);
free(debugLevel);
if (rc == LDAP_NO_MEMORY) {

fprintf(stderr, "Out of memory error encountered.\n");
exit(1);

}
else if (rc != LDAP_SUCCESS) {

fprintf(stderr, "The debug value is not valid.\n");
exit(1);

}
}
break;

case ’p’:
ldapport = atoi(optarg);
port = TRUE;
break;

case ’S’: /* use Sasl Bind functions */
case ’m’:

if (strncasecmp(optarg, "external", 8) == 0) {
sasl_bind = TRUE;
mechanism = LDAP_MECHANISM_EXTERNAL;

} else if (strncasecmp(optarg, "GSSAPI", 6) == 0) {
sasl_bind = TRUE;
krb5_bind = TRUE;
mechanism = LDAP_MECHANISM_GSSAPI;

} else if (strncasecmp(optarg, "CRAM-MD5", 8) == 0) {
sasl_bind = TRUE;
mand_auth_bind = TRUE;
mechanism = LDAP_MECHANISM_CRAM;

} else if (strncasecmp(optarg, "DIGEST-MD5", 10) == 0) {
sasl_bind = TRUE;
mand_auth_bind = TRUE;
mechanism = LDAP_MECHANISM_DIGEST;

} else {
fprintf(stderr, "supported mechanisms are EXTERNAL, GSSAPI, CRAM-MD5 and DIGEST-MD5\n");
usage(prog);
exit(1);

}

ldapdelete.c

Appendix C. Example programs 163

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

break;
case ’n’: /* print deletes, don’t actually do them */

not = TRUE;
break;

case ’R’: /* don’t automatically chase referrals */
follow_referrals = LDAP_OPT_OFF;
break;

case ’M’:
manageDsa = TRUE;
break;

case ’v’: /* verbose mode */
verbose = TRUE;
break;

case ’K’:
keyfile = strdup(optarg);
break;

case ’P’:
keyfile_pw = strdup(optarg);
break;

case ’N’:
keyfile_dn = strdup(optarg);
break;

case ’Z’:
ssl = TRUE;
break;

case ’g’:
realmname = strdup (optarg);
break;

case ’U’:
username = strdup (optarg);
break;

case ’?’:
default:

usage(prog);
exit(1);

}
}

if (manageDsa && (ldapversion == LDAP_VERSION2)) {
fprintf(stderr, "-M option requires version 3.\n");
exit(1);

}

/* A ldap_sasl_bind requires a ldapversion of 3. */
if (sasl_bind && (ldapversion == LDAP_VERSION2)) {

fprintf(stderr, "-S/-m option requires version 3.\n");
usage(prog);
exit(1);

}

/* DIGEST-MD5 bind requires username. */
if ((strcmp(mechanism, LDAP_MECHANISM_DIGEST) == 0) && (username == NULL)) {

fprintf(stderr, "DIGEST-MD5 bind requires -U option.\n");
usage(prog);
exit(1);

}

/* If the host was not specified, then attempt to get the host that this application
is running on DNS name. If we are unable to resolve its name, then use the string
127.0.0.1 to represent the localhost.

*/

if (!host_named) {
char temp[200];
int worked = gethostname(temp, 200);
if (worked == 0) {

ldaphost = strdup(temp);
}

}

ldapdelete.c

164 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (fp == NULL) {
if (optind >= argc) {

fp = stdin;
}

}

if (!not) {
if (ssl) {

if (!port) {
ldapport = LDAPS_PORT;

}

if (keyfile == NULL) {
keyfile = getenv("SSL_KEYRING");
if (keyfile != NULL) {

keyfile = strdup(keyfile);
}

}

if (verbose) {
printf("ldap_ssl_client_init(%s, %s, 0,"

" &failureReasonCode)\n",
keyfile ? keyfile : "NULL",
keyfile_pw ? keyfile_pw : "NULL");

}
rc = ldap_ssl_client_init(keyfile, keyfile_pw, 0,

&failureReasonCode) ;
if (rc != LDAP_SUCCESS) {

fprintf(stderr,
"ldap_ssl_client_init failed! rc == %d,"
" failureReasonCode == %d\n"
" reason text: %s\n",
rc, failureReasonCode, ldap_err2string(rc));

exit(1) ;
}
if (verbose) {

printf("ldap_ssl_init(%s, %d, %s)\n",
ldaphost, ldapport,
keyfile_dn ? keyfile_dn : "NULL");

}
ld = ldap_ssl_init(ldaphost, ldapport, keyfile_dn) ;
if (ld == NULL) {

fprintf(stderr, "ldap_ssl_init failed\n") ;
perror(ldaphost) ;
exit(1) ;

}
}
else {

if (verbose) {
printf("ldap_init(%s, %d) \n", ldaphost, ldapport);

}
if ((ld = ldap_init(ldaphost, ldapport)) == NULL) {

perror(ldaphost);
exit(1);

}
}

ldap_set_option_np(ld, LDAP_OPT_PROTOCOL_VERSION, ldapversion);
ldap_set_option_np(ld, LDAP_OPT_DEREF, deref);
ldap_set_option_np(ld, LDAP_OPT_REFERRALS, follow_referrals);

if (krb5_bind) {
ldap_set_rebind_proc(ld, krb5_rebindproc);

} else if (binddn != NULL && mand_auth_bind == FALSE) {
ldap_set_rebind_proc(ld, rebindproc);

}

if (ldapversion != LDAP_VERSION2 && sasl_bind == TRUE) {
if ((!strcasecmp(mechanism,LDAP_MECHANISM_CRAM)) ||

(!strcasecmp(mechanism,LDAP_MECHANISM_DIGEST))) {

if ((userControl = (LDAPControl *)malloc(sizeof(LDAPControl))) == NULL) {

ldapdelete.c

Appendix C. Example programs 165

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fprintf(stderr, "Out of memory error encountered.\n");
exit(1);

}

if ((realmControl = (LDAPControl *)malloc(sizeof(LDAPControl))) == NULL) {
fprintf(stderr, "Out of memory error encountered.\n");
exit(1);

}

userControl->ldctl_oid = IBM_CLIENT_MD5_USER_NAME_OID;
userControl->ldctl_value.bv_len = strlen(username);
userControl->ldctl_value.bv_val = username;
userControl->ldctl_iscritical = LDAP_OPT_OFF;

realmControl->ldctl_oid = IBM_CLIENT_MD5_REALM_NAME_OID;
realmControl->ldctl_value.bv_len = strlen(realmname);
realmControl->ldctl_value.bv_val = realmname;
realmControl->ldctl_iscritical = LDAP_OPT_OFF;

md5_Controls[0] = userControl;
md5_Controls[1] = realmControl;
md5_Controls[2] = NULL;

cred.bv_len = strlen (passwd);
cred.bv_val = strdup (passwd);

if (ldap_sasl_bind_s(ld, binddn, mechanism, &cred, NULL,
(LDAPControl **)&md5_Controls,
servercred) != LDAP_SUCCESS) {

ldap_perror(ld, "ldap_sasl_bind_s");
exit(1);

}
} else {

/* Kerberos and EXTERNAL */
if (ldap_sasl_bind_s(ld, NULL, mechanism, NULL, NULL, NULL,

servercred) != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_sasl_bind_s");
exit(1);

}
}

} else if (ldapversion == LDAP_VERSION2 || binddn != NULL) {
/*
* Bind is required for LDAP V2 protocol,
* but not for V3 (or later) protocols.
* We also bind if a bind DN was specified.
*/

if (ldap_bind_s(ld, binddn, passwd, LDAP_AUTH_SIMPLE)
!= LDAP_SUCCESS) {

ldap_perror(ld, "ldap_bind");
exit(1);

}
}

} /* ! not */

if (fp == NULL) {
for (; (rc == LDAP_SUCCESS || contoper) && optind < argc; ++optind) {

rc = dodelete(ld, argv[optind]);
}

}
else {

rc = LDAP_SUCCESS;
while ((rc == LDAP_SUCCESS || contoper) &&

fgets(buf, sizeof(buf), fp) != NULL) {
buf[strlen(buf) - 1] = ’\0’; /* remove trailing newline */
if (*buf != ’\0’) {

rc = dodelete(ld, buf);
}

}
}

if (!not) {
ldap_unbind(ld);

ldapdelete.c

166 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}

if (userControl != NULL) {
free(userControl);

}

if (realmControl != NULL) {
free(realmControl);

}

exit(rc);
}

static void usage(char *s)
{

fprintf(stderr, "usage: %s [options] [-f file | < entryfile | dn ... >]\n"
, s);

fprintf(stderr, "where:\n");
fprintf(stderr, " dn distinguished name of entry to delete\n");
fprintf(stderr, " entryfile file containing DNs to delete\n");
fprintf(stderr, " on consecutive lines\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -? print this text\n");
fprintf(stderr, " -V version select LDAP protocol version"

" (2 or 3; default is 3)\n");
fprintf(stderr, " -S mechanism select SASL bind mechanism"

" (supported mechanisms are EXTERNAL, GSSAPI, CRAM-MD5 and DIGEST-MD5)\n");
fprintf(stderr, " -m mechanism select SASL bind mechanism"

" (supported mechanisms are EXTERNAL, GSSAPI, CRAM-MD5, and DIGEST-MD5)\n");
fprintf(stderr, " -c continue even if error encountered\n");
fprintf(stderr, " -n show what would be done but don’t actually"

" delete\n");
fprintf(stderr, " -v run in verbose mode (diagnostics to"

" standard output)\n");
fprintf(stderr, " -R do not automatically follow referrals\n");
fprintf(stderr, " -M Treat referral objects as normal entries."

" (requires -V 3)\n");
fprintf(stderr, " -d level set LDAP debugging level to ’level’\n");
fprintf(stderr, " -f file perform sequence of deletes listed"

" in ’file’\n");
fprintf(stderr, " -D binddn bind dn\n");
fprintf(stderr, " -w passwd bind passwd\n");
fprintf(stderr, " -h host ldap server\n");
fprintf(stderr, " -p port port on ldap server\n");
fprintf(stderr, " -Z use a secure ldap connection for the"

" operation\n");
fprintf(stderr, " -K keyfile file to use for keys/certificates\n");
fprintf(stderr, " -P key_pw keyfile password\n");
fprintf(stderr, " -N key_dn Certificate Name in keyfile\n");
fprintf(stderr, " -g realm Mandatory Authentication realm\n");
fprintf(stderr, " -U username Mandatory Authentication username (uid) \n");
fprintf(stderr, "\nRefer to \"z/OS Security Server LDAP Client Programming"

" Guide\", Document Number: SC24-5924, for complete documentation\n");
}

static int dodelete(LDAP *ld, char *dn)
{

int rc;

if (verbose) {
printf("%sdeleting entry %s\n", not ? "!" : "", dn);

}
if (not) {

rc = LDAP_SUCCESS;
}
else {

rc = ldap_delete_ext_s(ld, dn,
manageDsa ? M_controls : NULL,
NULL);

if (rc != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_delete");

ldapdelete.c

Appendix C. Example programs 167

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

}
else if (verbose) {

printf("entry removed\n");
}

}

return (rc);
}

int rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp,
int freeit)

{
if (!freeit) {

*methodp = LDAP_AUTH_SIMPLE;
if (binddn != NULL) {

*dnp = strdup(binddn);
*pwp = strdup(passwd);

}
else {

*dnp = NULL;
*pwp = NULL;

}
}
else {

free(*dnp);
free(*pwp);

}
return (LDAP_SUCCESS);

}

int krb5_rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp,
int freeit)

{

*methodp = LDAP_AUTH_SASL_30;
*dnp = NULL;
*pwp = NULL;
return(LDAP_SUCCESS);

}

ldapdelete.c

168 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

The ldapsearch.c example program
The following program is an example of searching entries using the LDAP APIs. The example program can
also be found in the /usr/lpp/ldap/examples directory.

Note the following regarding the ldapsearch.c example program and all program source shipped in
/usr/lpp/ldap/examples :

v The example source code as shipped with the LDAP Server is only compilable from the z/OS shell
environment. As shipped, the code is not compilable from the batch environment.

v If compilation from a batch environment is required, compilation flags and libraries required can be
found in the Makefile. See “Using TSO and batch jobs” on page 8 for more information about linking,
compiling, and running LDAP client applications using TSO and batch jobs.

v Be aware that there are lines in the example code that exceed 80 characters in length. If the modules
are placed into datasets, the datasets must be allocated such that these lines are not truncated.

v See z/OS: UNIX System Services Command Reference for more details about running the c89 program
from the z/OS shell and from batch.

??=ifdef __COMPILER_VER__
??=pragma filetag ("IBM-1047")
??=endif

/***/
/* THIS FILE CONTAINS SAMPLE CODE. IBM PROVIDES THIS CODE ON AN */
/* ’AS IS’ BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS */
/* OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES */
/* OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
/***/

/*
* Copyright (c) 1995 Regents of the University of Michigan.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of Michigan at Ann Arbor. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is’’ without express or implied warranty.
*/

/* ldapsearch.c - simple program to search, list, or read entries
* using LDAP
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <ctype.h>
#include <ldap.h>
#include <line64.h>
#include <unistd.h>
#include <locale.h>

#define _XOPEN_SOURCE_EXTENDED 1
#include <signal.h> /* sigignore() */

#ifndef TRUE
#define TRUE 1

#endif

Figure 7. ldapsearch.c example program

ldapsearch.c

Appendix C. Example programs 169

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#ifndef FALSE
#define FALSE 0

#endif

#define DEFSEP "="

#ifdef __cplusplus
extern "C" {
#endif
int rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp, int

freeit);
int krb5_rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp, int

freeit);
#ifdef __cplusplus
}
#endif

static int dosearch(LDAP *, char *, int, char **, int, char *, char *);
static void print_entry(LDAP *, LDAPMessage *, int);
static int write_ldif_value(char *, char *, unsigned long);
static void usage(char *s);
static int write_ldif_value_or_bvalue(char *, char *, unsigned long, char *,

unsigned long);

static char *prog = NULL;
static char *binddn = NULL;
static char *passwd = NULL;
static char *base = NULL;
static char *ldaphost = "127.0.0.1";
static int ldapport = LDAP_PORT;
static char *sep = DEFSEP;
static int verbose, not, allow_binary, print_local, vals2tmp, ldif;
static int ldapversion = LDAP_VERSION3;

static LDAPControl manageDsaIT = { "2.16.840.1.113730.3.4.2", /*OID*/
{0, NULL}, /*no value*/
LDAP_OPT_ON /*critical*/

};
static LDAPControl *M_controls[2] = { &manageDsaIT, NULL};

main(int argc, char **argv) {
char *optpattern = "?ZnvtRMABCLD:V:s:f:h:b:d:p:F:a:w:l:z:S:K:P:N:m:U:g:";
char *infile, *filtpattern, **attrs, line[BUFSIZ];
FILE * fp;
int rc, i, first, scope, deref, attrsonly, port = 0;
int timelimit, sizelimit;
int follow_referrals;
LDAP * ld;
extern char *optarg;
extern int optind;
char * debugLevel = NULL;
int ssl = FALSE;
char *keyfile = NULL, *keyfile_pw = NULL, *keyfile_dn = NULL;
int failureReasonCode;
FILE * cf_fd;
char *mechanism = NULL;
int sasl_bind = FALSE;
int host_named = FALSE;
struct berval **servercred = NULL;
int manageDsa = FALSE;
int krb5_bind = FALSE;
struct berval cred;
char *realmname = NULL;
char *username = NULL;
int mand_auth_bind = FALSE;
LDAPControl *userControl = NULL;
LDAPControl *realmControl = NULL;
LDAPControl *md5_Controls[3];

ldapsearch.c

170 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (prog = strrchr(argv[0], ’/’)) /* Strip off any path info
* on program name
*/

++prog;
else

prog = argv[0];

sigignore(SIGPIPE); /* Ignore possible PIPE errors
generated by the sockets */

setlocale(LC_ALL, "");

infile = NULL;
deref = verbose = allow_binary = print_local = not = vals2tmp = attrsonly = ldif = 0;
follow_referrals = LDAP_OPT_ON; /* default to chase referrals */
sizelimit = timelimit = 0;
scope = LDAP_SCOPE_SUBTREE;

while ((i = getopt(argc, argv, optpattern)) != EOF) {

switch (i) {
case ’V’: /* use version 3 functions */

ldapversion = atoi(optarg);
if (ldapversion != LDAP_VERSION2 &&

ldapversion != LDAP_VERSION3) {
fprintf(stderr, "Incorrect version level supplied.\n");
fprintf(stderr, "Supported values for the -V parameter"

" are 2 and 3\n");
usage(prog);
exit(1);

}
break;

case ’S’: /* use Sasl Bind functions */
case ’m’:

if (strncasecmp(optarg, "external", 8) == 0) {
sasl_bind = TRUE;
mechanism = LDAP_MECHANISM_EXTERNAL;

}
else if (strncasecmp(optarg, "GSSAPI", 6) == 0) {

krb5_bind = TRUE;
sasl_bind = TRUE;
mechanism = LDAP_MECHANISM_GSSAPI;

}
else if (strncasecmp(optarg, "CRAM-MD5", 8) == 0) {

mand_auth_bind = TRUE;
sasl_bind = TRUE;
mechanism = LDAP_MECHANISM_CRAM;

}
else if (strncasecmp(optarg, "DIGEST-MD5", 10) == 0) {

mand_auth_bind = TRUE;
sasl_bind = TRUE;
mechanism = LDAP_MECHANISM_DIGEST;

}
else {

fprintf(stderr, "supported mechanisms are EXTERNAL, GSSAPI, CRAM-MD5, and DIGEST-MD5\n");
usage(prog);
exit(1);

}
break;

case ’n’: /* do Not do any searches */
not = TRUE;
break;

case ’v’: /* verbose mode */
verbose = TRUE;
break;

case ’d’:
if ((debugLevel = strdup(optarg)) == NULL) {

fprintf(stderr, "Out of memory error encountered.\n");
exit(1);

}
else {

ldapsearch.c

Appendix C. Example programs 171

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

rc = ldap_set_option_np(NULL, LDAP_OPT_DEBUG_STRING, debugLevel);
free(debugLevel);
if (rc == LDAP_NO_MEMORY) {

fprintf(stderr, "Out of memory error encountered.\n");
exit(1);

}
else if (rc != LDAP_SUCCESS) {

fprintf(stderr, "The debug value is not valid.\n");
exit(1);

}
}
break;

case ’t’: /* write attribute values to /tmp files */
vals2tmp = TRUE;
break;

case ’R’: /* don’t automatically chase referrals */
follow_referrals = LDAP_OPT_OFF;
break;

case ’M’: /* manage referral objects as normal entries */
manageDsa = TRUE;
break;

case ’A’: /* retrieve attribute names only -- no values */
attrsonly = TRUE;
break;

case ’L’: /* print entries in LDIF format */
ldif = TRUE;
allow_binary = TRUE; /* always allow binary when outputting LDIF */
break;

case ’B’: /* allow binary values to be printed */
allow_binary = TRUE;
break;

case ’C’: /* allow multi-byte UTF-8 characters to be printed */
print_local = TRUE;
break;

case ’s’: /* search scope */
if (strncasecmp(optarg, "base", 4) == 0) {

scope = LDAP_SCOPE_BASE;
}
else if (strncasecmp(optarg, "one", 3) == 0) {

scope = LDAP_SCOPE_ONELEVEL;
}
else if (strncasecmp(optarg, "sub", 3) == 0) {

scope = LDAP_SCOPE_SUBTREE;
}
else {

fprintf(stderr, "scope should be base, one, or sub\n");
usage(prog);
exit(1);

}
break;

case ’a’: /* set alias deref option */
if (strncasecmp(optarg, "never", 5) == 0) {

deref = LDAP_DEREF_NEVER;
}
else if (strncasecmp(optarg, "search", 5) == 0) {

deref = LDAP_DEREF_SEARCHING;
}
else if (strncasecmp(optarg, "find", 4) == 0) {

deref = LDAP_DEREF_FINDING;
}
else if (strncasecmp(optarg, "always", 6) == 0) {

deref = LDAP_DEREF_ALWAYS;
}
else {

fprintf(stderr, "alias deref should be never, search,"
" find, or always\n");

usage(prog);
exit(1);

}
break;

ldapsearch.c

172 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

case ’F’: /* field separator */
sep = strdup(optarg);
break;

case ’f’: /* input file */
infile = strdup(optarg);
break;

case ’h’: /* ldap host */
ldaphost = strdup(optarg);
host_named = TRUE;
break;

case ’b’: /* searchbase */
base = strdup(optarg);
break;

case ’D’: /* bind DN */
binddn = strdup(optarg);
break;

case ’p’: /* ldap port */
ldapport = atoi(optarg);
port = 1;
break;

case ’w’: /* bind password */
passwd = strdup(optarg);
break;

case ’l’: /* time limit */
timelimit = atoi(optarg);
break;

case ’z’: /* size limit */
sizelimit = atoi(optarg);
break;

case ’K’:
keyfile = strdup(optarg);
break;

case ’P’:
keyfile_pw = strdup(optarg);
break;

case ’Z’:
ssl = TRUE;
break;

case ’N’:
keyfile_dn = strdup(optarg);
break;

case ’U’:
username = strdup(optarg);
break;

case ’g’:
realmname = strdup(optarg);
break;

case ’?’:
usage(prog);
exit(0);

default:
usage(prog);
exit(1);

}
}

if (manageDsa && (ldapversion == LDAP_VERSION2)) {
fprintf(stderr, "-M option requires version 3. -M ignored.\n");
manageDsa = FALSE;

}

/* A ldap_sasl_bind requires a ldapversion of 3. */
if (sasl_bind && (ldapversion == LDAP_VERSION2)) {

fprintf(stderr, "-S/-m option requires version 3.\n");
usage(prog);
exit(1);

}

/* DIGEST-MD5 bind requires username. */
if ((strcmp(mechanism, LDAP_MECHANISM_DIGEST) == 0) && (username == NULL)) {

ldapsearch.c

Appendix C. Example programs 173

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fprintf(stderr, "DIGEST-MD5 bind requires -U option.\n");
usage(prog);
exit(1);

}

/* If the host was not specified, then attempt to get the host that this application
is running on DNS name. If we are unable to resolve its name, then use the string
127.0.0.1 to represent the localhost.

*/

if (!host_named) {
char temp[200];
int worked = gethostname(temp, 200);
if (worked == 0) {

ldaphost = strdup(temp);
}

}

if (base == NULL) {
base = getenv("LDAP_BASEDN");
if (base != NULL) {

base = strdup(base);
}
/* if NULL will start at top */

}

if (argc - optind < 1) {
usage(prog);
exit(1);

}
filtpattern = strdup(argv[optind]);
if (argv[optind + 1] == NULL) {

attrs = NULL;
}
else {

attrs = &argv[optind + 1];
}
if (infile != NULL) {

if (infile[0] == ’-’ && infile[1] == ’\0’) {
fp = stdin;

}
else if ((fp = fopen(infile, "r")) == NULL) {

perror(infile);
exit(1);

}
}

if (!not) {
if (ssl) {

if (!port) {
ldapport = LDAPS_PORT;

}

if (keyfile == NULL) {
keyfile = getenv("SSL_KEYRING");
if (keyfile != NULL) {

keyfile = strdup(keyfile);
}

}

if (verbose) {
printf("ldap_ssl_client_init(%s, %s, 0,"

" &failureReasonCode)\n",
keyfile ? keyfile : "NULL",
keyfile_pw ? keyfile_pw : "NULL");

}
rc = ldap_ssl_client_init(keyfile, keyfile_pw, 0,

&failureReasonCode) ;
if (rc != LDAP_SUCCESS) {

ldapsearch.c

174 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

fprintf(stderr,
"ldap_ssl_client_init failed! rc == %d,"
" failureReasonCode == %d\n"
" reason text: %s\n",
rc, failureReasonCode, ldap_err2string(rc));

exit(1) ;
}
if (verbose) {

printf("ldap_ssl_init(%s, %d, %s)\n", ldaphost, ldapport,
keyfile_dn ? keyfile_dn : "NULL");

}
ld = ldap_ssl_init(ldaphost, ldapport, keyfile_dn) ;
if (ld == NULL) {

fprintf(stderr, "ldap_ssl_init failed\n") ;
perror(ldaphost) ;
exit(1) ;

}
}
else {

if (verbose) {
printf("ldap_init(%s, %d) \n", ldaphost, ldapport);

}
if ((ld = ldap_init(ldaphost, ldapport)) == NULL) {

fprintf(stderr, "ldap_init failed; LDAP Handle is NULL.\n");
exit(1);

}
}

ldap_set_option_np(ld, LDAP_OPT_PROTOCOL_VERSION, ldapversion);
ldap_set_option_np(ld, LDAP_OPT_DEREF, deref);
ldap_set_option_np(ld, LDAP_OPT_REFERRALS, follow_referrals);
ldap_set_option_np(ld, LDAP_OPT_TIMELIMIT, timelimit);
ldap_set_option_np(ld, LDAP_OPT_SIZELIMIT, sizelimit);

if (krb5_bind) {
ldap_set_rebind_proc(ld, krb5_rebindproc);

}
else if (binddn != NULL && mand_auth_bind == FALSE) {

ldap_set_rebind_proc(ld, rebindproc);
}

if (ldapversion != LDAP_VERSION2 && sasl_bind == TRUE) {
if ((!strcasecmp(mechanism,LDAP_MECHANISM_CRAM)) ||

(!strcasecmp(mechanism,LDAP_MECHANISM_DIGEST))) {

if ((userControl = (LDAPControl *)malloc(sizeof(LDAPControl))) == NULL) {
fprintf(stderr, "Out of memory error encountered.\n");
exit(1);

}

if ((realmControl = (LDAPControl *)malloc(sizeof(LDAPControl))) == NULL) {
fprintf(stderr, "Out of memory error encountered.\n");
exit(1);

}

userControl->ldctl_oid = IBM_CLIENT_MD5_USER_NAME_OID;
userControl->ldctl_value.bv_len = strlen(username);
userControl->ldctl_value.bv_val = username;
userControl->ldctl_iscritical = LDAP_OPT_OFF;

realmControl->ldctl_oid = IBM_CLIENT_MD5_REALM_NAME_OID;
realmControl->ldctl_value.bv_len = strlen(realmname);
realmControl->ldctl_value.bv_val = realmname;
realmControl->ldctl_iscritical = LDAP_OPT_OFF;

md5_Controls[0] = userControl;
md5_Controls[1] = realmControl;
md5_Controls[2] = NULL;

cred.bv_len = strlen (passwd);
cred.bv_val = strdup (passwd);

ldapsearch.c

Appendix C. Example programs 175

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (ldap_sasl_bind_s(ld, binddn, mechanism, &cred, NULL,
(LDAPControl **) &md5_Controls,
servercred) != LDAP_SUCCESS) {

ldap_perror(ld, "ldap_sasl_bind_s");
exit(1);

}
}
else {

/* Kerberos and EXTERNAL */
if (ldap_sasl_bind_s(ld, NULL, mechanism, NULL, NULL, NULL,

servercred) != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_sasl_bind_s");
exit(1);

}
}

}
else if (ldapversion == LDAP_VERSION2 || binddn != NULL) {

/*
* Bind is required for LDAP V2 protocol,
* but not for V3 (or later) protocols.
* We also bind if a bind DN was specified.
*/

if (ldap_bind_s(ld, binddn, passwd, LDAP_AUTH_SIMPLE)
!= LDAP_SUCCESS) {

ldap_perror(ld, "ldap_bind");
exit(1);

}
}

if (manageDsa) {
ldap_set_option_np(ld, LDAP_OPT_SERVER_CONTROLS, M_controls);

}

} /* ! not */

if (verbose) {
printf("filter pattern: %s\nreturning: ", filtpattern);
if (attrs == NULL) {

printf("ALL");
}
else {

for (i = 0; attrs[i] != NULL; ++i) {
printf("%s ", attrs[i]);

}
}
putchar(’\n’);

}

if (infile == NULL) {
rc = dosearch(ld, base, scope, attrs, attrsonly, filtpattern, NULL);

}
else {

rc = LDAP_SUCCESS;
first = 1;
while (rc == LDAP_SUCCESS &&

fgets(line, sizeof(line), fp) != NULL) {
line[strlen(line) - 1] = ’\0’;
if (!first) {

putchar(’\n’);
}
else {

first = 0;
}
rc = dosearch(ld, base, scope, attrs, attrsonly, filtpattern,

line);
}
if (fp != stdin) {

fclose(fp);
}

}

if (!not) {

ldapsearch.c

176 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ldap_set_option_np(ld, LDAP_OPT_SERVER_CONTROLS, NULL);
ldap_unbind(ld);

}

if (userControl != NULL) {
free(userControl);

}

if (realmControl != NULL) {
free(realmControl);

}

exit(rc);
}

static void usage(char *s) {
fprintf(stderr, "usage: %s [options] filter [attributes...]\nwhere:\n",

s);
fprintf(stderr, " filter RFC-1558 compliant LDAP search filter\n");
fprintf(stderr, " attributes whitespace-separated list of"

" attributes to retrieve\n");
fprintf(stderr, " (if no attribute list is given, all are"

" retrieved)\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -? print this text\n");
fprintf(stderr, " -V version select LDAP protocol version"

" (2 or 3; default is 3)\n");
fprintf(stderr, " -S mechanism select SASL bind mechanism"

" (supported mechanisms are EXTERNAL, GSSAPI, CRAM-MD5, and DIGEST-MD5)\n");
fprintf(stderr, " -m mechanism select SASL bind mechanism"

" (supported mechanisms are EXTERNAL, GSSAPI, CRAM-MD5, and DIGEST-MD5)\n");
fprintf(stderr, " -n show what would be done but don’t actually"

" search\n");
fprintf(stderr, " -v run in verbose mode (diagnostics to standard"

" output)\n");
fprintf(stderr, " -t write values to files in /tmp\n");
fprintf(stderr, " -A retrieve attribute names only (no values)\n");
fprintf(stderr, " -B do not suppress printing of non-printable"

" values (printed in wire format)\n");
fprintf(stderr, " -C do not suppress printing of printable non-ascii"

" values (printed in local codepage)\n");
fprintf(stderr, " -L print entries in LDIF format"

" (-B is implied)\n");
fprintf(stderr, " -R do not automatically follow referrals\n");
fprintf(stderr, " -M Manage referral objects as normal entries."

" (requires -V 3)\n");
fprintf(stderr, " -d level set LDAP debugging level to ’level’\n");
fprintf(stderr, " -F sep print `sep’ instead of `=’ between"

" attribute names and values\n");
fprintf(stderr, " -f file perform sequence of searches listed in"

" ’file’. (’-’ implies stdin)\n");
fprintf(stderr, " -b basedn base dn for search. LDAP_BASEDN in"

" environment is default\n");
fprintf(stderr, " -s scope one of base, one, or sub"

" (search scope)\n");
fprintf(stderr, " -a deref one of never, always, search, or"

" find (alias dereferencing)\n");
fprintf(stderr, " -l time lim time limit (in seconds) for search\n");
fprintf(stderr, " -z size lim size limit (in entries) for search\n");
fprintf(stderr, " -D binddn bind dn\n");
fprintf(stderr, " -w passwd bind passwd\n");
fprintf(stderr, " -h host ldap server\n");
fprintf(stderr, " -p port port on ldap server\n");
fprintf(stderr, " -Z use a secure ldap connection for search\n");
fprintf(stderr, " -K keyfile file to use for keys/certificates\n");
fprintf(stderr, " -P key_pw keyfile password\n");
fprintf(stderr, " -N key_dn Certificate Name in keyfile\n");
fprintf(stderr, " -g realm Mandatory Authentication realm\n");
fprintf(stderr, " -U username Mandatory Authentication username (uid) \n");
fprintf(stderr, "\nRefer to \"z/OS Security Server LDAP Client Programming"

" Guide\", Document Number: SC24-5924, for complete documentation\n");
}

ldapsearch.c

Appendix C. Example programs 177

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

static int dosearch(LDAP *ld, char *base, int scope, char **attrs,
int attrsonly, char *filtpatt, char *value) {

char filterOnStack[BUFSIZ], **val, *filter;
int rc, first, matches, freeFilter;
int references;
char **referrals = NULL;
int errcode;
char *matched, *errmsg;
LDAPMessage * res, *e;
int msgidp;
int filterLength;

if (value) {
filterLength = strlen(filtpatt) + strlen(value);

}
else {

filterLength = strlen(filtpatt);
}

if (filterLength < BUFSIZ) {
filter = filterOnStack;
freeFilter = 0;

}
else {

if ((filter= (char *) malloc(filterLength+1)) == NULL) {
fprintf(stderr, "Unable to allocate storage for filter (%d)\n", filterLength);
return(LDAP_NO_MEMORY);

}
freeFilter = 1;

}

if (value) {
sprintf(filter, filtpatt, value);

}
else {

if (filterLength > BUFSIZ) {
strncpy (filter, filtpatt, filterLength);

}
else {

strncpy (filter, filtpatt, BUFSIZ - 1);
}

}

if (verbose) {
printf("filter is: (%s)\n", filter);

}

if (not) {
return(LDAP_SUCCESS);

}
if (ldap_search(ld, base, scope, filter, attrs, attrsonly) == -1) {

ldap_perror(ld, "ldap_search");
return(ldap_get_errno(ld));

}

matches = 0;
references = 0;
first = 1;

for (; ;) {
rc = ldap_result(ld, LDAP_RES_ANY, 0, NULL, &res);
if (rc == LDAP_RES_SEARCH_ENTRY) {

matches++;
e = ldap_first_entry(ld, res);
if (!first) {

putchar(’\n’);
}
else {

ldapsearch.c

178 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

first = 0;
}
print_entry(ld, e, attrsonly);
ldap_msgfree(res);

}
else if (rc == LDAP_RES_SEARCH_REFERENCE) {

references++;
/* parse and free the search reference */
ldap_parse_reference_np(ld, res, &referrals, NULL, 1);
if (referrals != NULL) {

int i;
for (i = 0; referrals[i] != NULL; i++) {

fprintf(stderr,
(i == 0) ? "Unfollowed search reference: %s\n" :
" %s\n",
referrals[i]);

}
fflush(stderr);
ldap_value_free(referrals);
referrals = NULL;

}
}
else {

/* must be a search result */
break;

}
} /* end for */

if (rc == -1) {
ldap_perror(ld, "ldap_result");
return(rc);

}

if (ldapversion != LDAP_VERSION2) {
if ((rc = ldap_parse_result(ld, res, &errcode, &matched, &errmsg,

&referrals, NULL, 1))
!= LDAP_SUCCESS) {

fprintf(stderr, "ldap_search: error parsing result: %d, %s\n",
rc, ldap_err2string(rc));

}
else {

if (errcode != LDAP_SUCCESS) {
fprintf(stderr, "ldap_search: %s\n",

ldap_err2string(errcode));
if (matched != NULL) {

if (*matched != ’\0’)
fprintf(stderr, "ldap_search: matched: %s\n",

matched);
ldap_memfree(matched);

}
if (errmsg != NULL) {

if (*errmsg != ’\0’)
fprintf(stderr, "ldap_search: additional info: %s\n",

errmsg);
ldap_memfree(errmsg);

}
}
if (referrals != NULL) {

int i;
for (i = 0; referrals[i] != NULL; i++) {

fprintf(stderr, "%s %s\n",
(i == 0) ? "Unfollowed referral:" :
" ",
referrals[i]);

}
ldap_value_free(referrals);
referrals = NULL;

}
}
fflush(stderr);

}
else {

ldapsearch.c

Appendix C. Example programs 179

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if ((rc = ldap_result2error(ld, res, 1)) != LDAP_SUCCESS) {
ldap_perror(ld, "ldap_search");

}
}

if (verbose) {
printf("%d matches\n", matches);
if (references > 0) {

printf("%d unfollowed references\n", references);
}

}

if (freeFilter) {
free(filter);

}

return(rc);
}

static void print_entry(LDAP *ld, LDAPMessage *entry, int attrsonly) {
char *a, *dn, tmpfname[64];
int i, j, printable = TRUE;
BerElement * ber;
struct berval **bvals;
FILE * tmpfp;
char **vals = NULL;

dn = ldap_get_dn(ld, entry);
if (ldif) {

write_ldif_value("dn", dn, strlen(dn));
}
else {

printf("%s\n", dn);
}
ldap_memfree(dn);

for (a = ldap_first_attribute(ld, entry, &ber); a != NULL;
a = ldap_next_attribute(ld, entry, ber)) {
if (attrsonly) {

if (ldif) {
write_ldif_value(a, "", 0);

}
else {

printf("%s\n", a);
}

}
else if (((bvals = ldap_get_values_len(ld, entry, a)) != NULL)

&& ((vals = ldap_get_values(ld, entry, a)) != NULL)) {
for (i = 0; bvals[i] != NULL; i++) {

if (vals2tmp) {
sprintf(tmpfname, "/tmp/ldapsearch-%s-XXXXXX", a);
tmpfp = NULL;

if (mktemp(tmpfname) == NULL) {
perror(tmpfname);

}
else if ((tmpfp = fopen(tmpfname, "w")) == NULL) {

perror(tmpfname);
}
else if (fwrite(bvals[i]->bv_val,

bvals[i]->bv_len, 1, tmpfp) == 0) {
perror(tmpfname);

}
else if (ldif) {

write_ldif_value(a, tmpfname, strlen(tmpfname));
}
else {

printf("%s%s%s\n", a, sep, tmpfname);
}

ldapsearch.c

180 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (tmpfp != NULL) {
fclose(tmpfp);

}
}
else {

int value_len = bvals[i]->bv_len;
char *str_value = vals[i];
if (ldif) {

write_ldif_value_or_bvalue(a,
str_value,
value_len,
bvals[i]->bv_val,
value_len);

}
else {

int str_value_len = strlen(str_value);
printable = TRUE;
/* if print_local==TRUE, don’t perform the following
* length check because a string containing multi-byte
* UTF-8 characters may not match the length of the same
* string as represented in the local codepage. Defer
* all "printable" checking to ’isprint()/isspace()’ if
* print_local==TRUE.
*/

if (print_local || (str_value_len == value_len)) {
for (j = 0; j < str_value_len; j++) {

if (!isprint(str_value[j]) &&
!isspace(str_value[j])) {

printable = FALSE;
break;

}
}

}
else {

printable = FALSE;
}

printf("%s%s%s\n", a, sep,
printable ? str_value :
(allow_binary ? bvals[i]->bv_val :
"NOT Printable"));

}
}

}
ldap_value_free_len(bvals);
ldap_value_free(vals);

}
else {

/* ldap_get_values_len returned NULL. This means that either
an error occurred or there were no values. Check the
ldap errno.

*/
if (ldap_get_errno(ld) != LDAP_SUCCESS) {

fprintf(stderr,
"ldap_search: ldap_get_values_len failed for attribute=%s. Return Code=%d, %s\n",
a, ldap_get_errno(ld), ldap_err2string(ldap_get_errno(ld)));

exit(1);
}

}

ldap_memfree(a);
}

}

static int
write_ldif_value_or_bvalue(char *type, char *value, unsigned long vallen,

char *bvalue, unsigned long bvallen) {
char *ldif;

if ((ldif = ldif_type_and_value_or_bvalue(type, value, (int)vallen,

ldapsearch.c

Appendix C. Example programs 181

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

bvalue, (int)bvallen))
== NULL) {

return(-1);
}

fputs(ldif, stdout);
free(ldif);

return(0);
}

static int
write_ldif_value(char *type, char *value, unsigned long vallen) {

char *ldif;

if ((ldif = ldif_type_and_value(type, value, (int)vallen)) == NULL) {
return(-1);

}

fputs(ldif, stdout);
free(ldif);

return(0);
}

int rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp,
int freeit) {

if (!freeit) {
*methodp = LDAP_AUTH_SIMPLE;
if (binddn != NULL) {

*dnp = strdup(binddn);
*pwp = strdup(passwd);

}
else {

*dnp = NULL;
*pwp = NULL;

}
}
else {

free (*dnp);
free (*pwp);

}
return(LDAP_SUCCESS);

}

int krb5_rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp,
int freeit) {

*methodp = LDAP_AUTH_SASL_30;
*dnp = NULL;
*pwp = NULL;
return(LDAP_SUCCESS);

}

ldapsearch.c

182 z/OS V1R4.0 Security Server LDAP Client Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision,
to use software products successfully. The major accessibility features in z/OS™ enable users to:

v Use assistive technologies such as screen-readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user interfaces found in z/OS.
Consult the assistive technology documentation for specific information when using it to access z/OS
interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS: TSO/E Primer, z/OS: TSO/E
User’s Guide, and z/OS: ISPF User’s Guide Volume I for information about accessing TSO/E and ISPF
interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or
function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

© Copyright IBM Corp. 1999, 2002 183

|

184 z/OS V1R4.0 Security Server LDAP Client Programming

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300

© Copyright IBM Corp. 1999, 2002 185

2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Programming interface information
This z/OS: Security Server LDAP Client Programming book primarily documents intended Programming
Interfaces that allow the customer to write programs to obtain services of z/OS LDAP.

This z/OS: Security Server LDAP Client Programming book also documents information that is not
intended to be used as Programming Interfaces of z/OS LDAP. This information is identified where it
occurs with an introductory statement to a chapter.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM IBMLink OS/2 Resource Link

AIX/6000 Language Environment OS/390 z/OS

BookManager Library Reader RACF

Java and all Java-based trademarks are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product or service names may be the trademarks or service marks of others.

186 z/OS V1R4.0 Security Server LDAP Client Programming

Bibliography

This bibliography provides a list of publications
that are useful when using the LDAP programming
interface:

v z/OS: Security Server LDAP Server
Administration and Use, SC24-5923

v z/OS: System Secure Sockets Layer
Programming, SC24-5901

v z/OS: DCE Application Development Guide:
Directory Services, SC24-5906

v z/OS: UNIX System Services Command
Reference, SA22-7802

v z/OS: Communications Server: IP Configuration
Guide, SC31-8775

v z/OS: Language Environment Customization,
SA22-7564

v z/OS: C/C++ Programming Guide, SC09-4765

v z/OS: Security Server Network Authentication
Service Administration, SC24-5926

v z/OS: Collection, SK3T-4269

v z/OS: Information Roadmap, SA22-7500

© Copyright IBM Corp. 1999, 2002 187

188 z/OS V1R4.0 Security Server LDAP Client Programming

Glossary

This glossary defines technical terms and
abbreviations used in z/OS LDAP documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate z/OS manual
or view IBM Dictionary of Computing, available
from:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

v IBM Dictionary of Computing, SC20-1699.

v Information Technology—Portable Operating
System Interface (POSIX), from the POSIX
series of standards for applications and user
interfaces to open systems, copyrighted by the
Institute of Electrical and Electronics Engineers
(IEEE).

v American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are identified
by the symbol (A) after the definition.

v Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1.SC1).

v CCITT Sixth Plenary Assembly Orange Book,
Terms and Definitions and working documents
published by the International
Telecommunication Union, Geneva, 1978.

v Open Software Foundation (OSF).

A
API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program.

attribute. Information of a particular type concerning
an object and appearing in an entry that describes the
object in the directory information base (DIB). It denotes
the attribute’s type and a sequence of one or more
attribute values, each accompanied by an integer
denoting the value’s syntax.

B
binding. A relationship between a client and a server
involved in a remote procedure call.

C
CDS. Cell Directory Service.

Cell Directory Service (CDS). A DCE component. A
distributed replicated database service that stores
names and attributes of resources located in a cell.
CDS manages a database of information about the
resources in a group of machines called a DCE cell.

certificate. Used to prove your identity. A secure
server must have a certificate and a public-private key
pair. A certificate is issued and signed by a Certificate
Authority (CA).

client. A computer or process that accesses the data,
services, or resources of another computer or process
on the network. Contrast with server.

cipher. A method of transforming text in order to
conceal its meaning.

D
data hierarchy. A data structure consisting of sets and
subsets such that every subset of a set is of lower rank
than the data of the set.

data model. (1) A logical view of the organization of
data in a database. (2) In a database, the user’s logical
view of the data in contrast to the physically stored
data, or storage structure. (3) A description of the
organization of data in a manner that reflects
information structure of an enterprise.

database. A collection of data with a given structure
for accepting, storing, and providing, on demand, data
for multiple users.

DCE. Distributed Computing Environment.

directory. (1) A logical unit for storing entries under
one name (the directory name) in a CDS namespace.
Each physical instance of a directory is called a replica.
(2) A collection of open systems that cooperates to hold
a logical database of information about a set of objects
in the real world.

directory schema. The set of rules and constraints
concerning directory information tree (DIT) structure,
object class definitions, attribute types, and syntaxes
that characterize the directory information base (DIB).

© Copyright IBM Corp. 1999, 2002 189

directory service. The directory service is a central
repository for information about resources in a
distributed system.

distinguished name (DN). One of the names of an
object, formed from the sequence of RDNs of its object
entry and each of its superior entries.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that supports
the development, use, and maintenance of distributed
applications. DCE is independent of the operating
system and network; it provides interoperability and
portability across heterogeneous platforms.

DN. Distinguished name.

DNS. Domain Name System.

Domain Name System (DNS). In the Internet suite of
protocols, the distributed database system used to map
domain names to IP addresses.

E
environment variable. A variable included in the
current software environment that is available to any
called program that requests it.

extended operations. A generic operation that
extends the LDAP protocol. The operation contains an
object identifier that uniquely identifies the intended
operation. The extended operation allows additional
operations to be defined for services not available
elsewhere in the LDAP V3 protocol.

G
Generic Security Service (GSS) API . An application
programming interface enabling application programs
that do not implement remote procedure calls (RPCs) to
have security services provided by a server in a
Distributed Computing Environment (DCE). The GSS
API provides security services to callers through a
generic method that functions independently of
underlying cryptography mechanisms or communication
protocols and can thus be used in many different
environments. The GSS API became available as part
of the Open Software Foundation’s (OSF’s) Release 1.1
of DCE.

GSS API. Generic Security Service API.

K
Kerberos. The security system of the Massachusetts
Institute of Technology’s (MIT’s) Project Athena. It uses
symmetric key cryptography to provide security services
to users in a network.

L
LDAP. Lightweight Directory Access Protocol.

Lightweight Directory Access Protocol (LDAP). A
client/server protocol for accessing a directory service.

O
object class. An identified family of objects that share
certain characteristics. An object class can be specific to
one application or shared among a group of
applications. An application interprets and uses an
entry’s class-specific attributes based on the class of
the object that the entry describes.

P
private key. Used for the encryption of data. A secure
server keeps its private key secret. A secure server
sends clients its public key so they can encrypt data to
the server. The server then decrypts the data with its
private key.

programming interface. The supported method
through which customer programs request software
services. The programming interface consists of a set of
callable services provided with the product.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication.

public key. Used for the encryption of data. A secure
server makes its public key widely available so that its
clients can encrypt data to send to the server. The
server then decrypts the data with its private key.

R
RDN. Relative distinguished name.

referral. An outcome that can be returned by a
directory system agent that cannot perform an operation
itself. The referral identifies one or more other directory
system agents more able to perform the operation.

relative distinguished name (RDN). A component of
a DN. It identifies an entry distinctly from any other
entries which have the same parent.

S
SASL. Simple Authentication Security Layer.

schema. See directory schema.

Secure Sockets Layer (SSL) security. A security
protocol that provides communication privacy over the
Internet. The protocol allows client/server applications to

190 z/OS V1R4.0 Security Server LDAP Client Programming

ommunicate in a way that is designed to prevent
eavesdropping, tampering, or message forgery.

server. On a network, the computer that contains
programs, data, or provides the facilities that other
computers on the network can access. Contrast with
client.

Simple Authentication Security Layer (SASL).
Refers to a method of binding using authentication
information outside the client and server.

SSL. Secure Sockets Layer.

T
thread. A single sequential flow of control within a
process.

TLS. Transport Layer Security.

Transport Layer Security. A security protocol that
provides communication privacy over the Internet. The
protocol allows client/server applications to ommunicate
in a way that is designed to prevent eavesdropping,
tampering, or message forgery. TLS is based upon SSL
Version 3.0.

X
X.500. The CCITT/ISO standard for the open systems
interconnection (OSI) application-layer directory. It
allows users to register, store, search, and retrieve
information about any objects or resources in a network
or distributed system.

X/OPEN Directory Service (XDS). An application
program interface that DCE uses to access its directory
service components. XDS provides facilities for adding,
deleting, and looking up names and their attributes. The
XDS library detects the format of the name to be looked
up and directs the calls it receives to either GDS or
CDS. XDS uses the X/OPEN object management
(XOM) API to define and manage its information.

X/OPEN object management (XOM). An interface for
creating, deleting, and accessing objects containing
information. It is an object-oriented architecture: each
object belongs to a particular class, and classes can be
derived from other classes inheriting the characteristics
of the original classes. The representation of the object
is transparent to the programmer; the object can be
manipulated only through the XOM interface.

XOM. The X/OPEN Object Management API.

Glossary 191

192 z/OS V1R4.0 Security Server LDAP Client Programming

Index

A
abandoning LDAP operation 28
accessibility 183
accessing RACF information 27
adding entries 10, 30, 121
aliases, following 62
approximate filter 88, 135
asynchronous LDAP operation 17
attribute values

comparing 12
counting 54
retrieving 54

attributes
counting 48
LDAP 2
stepping through 48
type 2

authentication
certificate 1
general 34
Kerberos 1
methods 1
SASL 34
simple 1, 34

B
Basic Encoding Rules (BER) 2
batch jobs

using to run, link, compile 8
BER (Basic Encoding Rules) 2
bibliography 187
bind mechanism 33
binding to Directory Service 9
binding to server 32
binding with SASL GSS API 1
books

related 187
breaking down LDAP URL 112

C
C programming language

utility routines 2
C/C++ programming language

for SOCKS server 5
LDAP DLL 3

caching
client-side search results 17
search results 70

call-back function 32
cancelling LDAP operation 28
certificate authentication 1
certificates 110
changing entry name 82
changing LDAP entries 76
changing RDN 12, 82

character string, deallocating 73
chasing referrals 61
checking for LDAP URL 112
ciphers 109
ciphers, supported 64
classes, LDAP SPI 17
client and server authentication 108
client API, LDAP 3
client controls 24, 25, 66
client-side caching 17
CNAME alias record 104
command-line utilities

ldapadd 121
ldapdelete 118
ldapmodify 121
ldapmodrdn 131
ldapsearch 135
using 116

comparing LDAP entries 37
compiling program 7, 8
configuration file, socks.conf 5
context LDAP handle 67
continuation references, retrieving 50
controls

client 25
LDAP 24
session 24

conventions in this document ix
counting attributes 48
counting continuation reference 50
counting LDAP entries 50
counting LDAP handles 54
counting LDAP values 54
CRAM-MD5 authentication 1
creating client side cache 70
creating SSL connection 107

D
data model

LDAP 2
datasets

z/OS 2
de-initialize LDAP API 10
deallocating

array of LDAP values 54
character strings 73
LDAP handle 32
LDAP URL description 112
LDAP values 54
memory 85
storage 6, 73
structures 76

debug levels 15, 16, 64
debug trace 62, 64
definitions of terms 189
deleting LDAP entries 11, 39, 161

© Copyright IBM Corp. 1999, 2002 193

deprecated APIs
ldap_bind 32
ldap_bind_s 32
ldap_modrdn 82
ldap_modrdn_s 82
ldap_open 57
ldap_perror 42
ldap_result2error 42
ldap_ssl_start 107
listing of 19

describing error message 42
DIGEST-MD5 authentication 1
directory

access protocol (LDAP) 1
entry

naming 2
Directory Service

extracting information from using LDAP 1
disability 183
distinguished name (DN)

getting from LDAP entry 53
parsing 53
specifying with LDAP 3

DLL (dynamic link library)
C/C++ 3

DNS (Domain Name Service) 41, 92
document organization ix
domain

eNetwork 41
Domain Name Service (DNS) 41, 92
dynamic link library (DLL) 3

E
eNetwork domain

managing 41
entries

deleting using example program 161
LDAP 2
searching using example program 169

environmental variables
PATH, setting 115
session settings 60

error code 67
error code, returning 42
error handling

LDAP 3, 5, 14
error message, describing 42
errors

printing indication of 42
retrieving 42

establishing call-back function 32
example Makefile 159
example programs

deleting entries 161
searching entries 169

extended error code 68
extended operations 46
extracting information 1
extracting information from results 79

F
file, configuration 5
filter

using for search 135
finding

LDAP server 92
first LDAP entry, getting 50
following aliases 62
freeing

character strings 73
LDAP handle 32
LDAP URL description 112
LDAP values 54
list of servers 92
memory 85
storage 6, 73
structures 76

freeing cache 70
function

call-back 32

G
general authentication 34
getting

error codes 42
first LDAP entry 50
LDAP attribute values 54
LDAP DNs 53
LDAP handles to attribute values 54
next attribute type name 48
next LDAP entry 50
option 57

GLDCLDAP 3
GLDCMMN 3
GLDDHUTD 3
GLDSCKS 3
global cache 70
glossary of terms 189
gskkyman utility 110

H
handling errors 3, 5
header files

lber.h 141
ldap.h 142
ldapssl.h 154

host name 67

I
IBM JNDI service provider 18
ibm-saslBindDigestRealmName 26
ibm-saslBindDigestUserName 25
ibm-serverHandledSearchRequest 25
inactivity timer 65
initialization functions 3
Initialization functions 4
initializing context 57

194 z/OS V1R4.0 Security Server LDAP Client Programming

initializing SSL 107
interface

programming interface information 186
programming, LDAP 1

interpreting results
LDAP 5, 13, 42

J
Java Naming and Directory Interface (JNDI). Se 17
JNDI (Java Naming and Directory Interface) 17

K
Kerberos

authentication 1
credentials 66

key database 110
keyboard 183

L
lber.h header file 141
LDAP

adding entry 10
API functions 3
asynchronous operation 17
changing RDN 12
client for Java 17
defining 1
deleting entries 11
error handling 14
example programs 161
header files

lber.h 141
ldap.h 142
ldapssl.h 154

interface 50
interface routines 92

abandoning operation 28
adding entry 30
binding to server 32
caching search results 70
checking for LDAP URL 112
comparing LDAP entries 37
controls 24
counting attributes 48
counting continuation reference 50
counting LDAP entries 50
counting LDAP values 54
counting values 54
creating SSL connection 107
deallocating array of values 54
deallocating character strings 73
deallocating LDAP URL description 112
deallocating memory 85
deallocating storage 73
deallocating structures 76
deallocating values 54
deleting LDAP entries 39
deprecated routines 19

LDAP (continued)
interface routines (continued)

describing error message 42
establishing call-back function 32
extracting information from results 79
finding LDAP server information 92
freeing character strings 73
freeing LDAP URL description 112
freeing LDAP values 54
freeing storage 73
freeing structures 76
getting option 57
initializing context 57
initializing SSL 107
managing eNetwork domain 41
modifying entries 76
modifying entry name 82
modifying RDN 82
obtaining DNs 53
obtaining message ID 85
obtaining message type 85
opening connection 57
parsing DNs 53
parsing URL 112
performing extended operations 46
printing error 42
rebinding 32
retrieving array of server controls 50
retrieving attribute values 54
retrieving error codes 42
retrieving first entry 50
retrieving list of continuation references 50
retrieving next attribute type name 48
retrieving pointers to attribute values 50
returning error codes 42
returning result 85
searching entries 87
searching entries with timeout 87
searching for URL 112
searching for URL with timeout 112
session controls 24
setting option 57
stepping through attributes 48
stepping through messages 74
unbinding 32
waiting for result 85

ldapdelete.c 161
ldapsearch.c 169
listing all subentries 13
modifying entry 11
program structure 9
program to delete entries 161
programming 1
reading an entry’s contents 12
reading attribute values 12
results, getting 13
synchronous operation 17
thread safety 17
URL 105, 107

specifying for host 58
using the API 9

Index 195

LDAP (continued)
utilities 115

LDAP SPI (service provider interface) 17
ldap_abandon 28
ldap_abandon_ext 28
ldap_add 9, 10, 30
ldap_add_ext 30
ldap_add_ext_s 30
ldap_add_s 11, 30
ldap_bind 9, 32
ldap_bind_s 9, 32
ldap_compare 9, 37
ldap_compare_ext 37
ldap_compare_ext_s 37
ldap_compare_s 12, 37
ldap_control_free 73
ldap_controls_free 73
ldap_count_attributes 48
ldap_count_entries 50
ldap_count_messages 74
ldap_count_references 50
ldap_count_values 54
ldap_count_values_len 54
LDAP_DEBUG 15
ldap_delete 9, 11, 39
ldap_delete_ext 39
ldap_delete_ext_s 39
ldap_delete_s 39
ldap_enetwork_domain_get 41
ldap_enetwork_domain_set 41
ldap_err2string 15, 42
ldap_explode_dn 53
ldap_extended_operation 46
ldap_extended_operation_s 46
ldap_first_attribute 48
ldap_first_entry 50
ldap_first_message 74
ldap_first_reference 50
ldap_free_urldesc 112
ldap_get_dn 53
ldap_get_entry_controls_np 50
ldap_get_errno 14, 42
ldap_get_option 57
ldap_get_values 54
ldap_get_values_len 54
ldap_init 9, 57
ldap_is_ldap_url 112
ldap_memcache_destroy 70
ldap_memcache_flush 70
ldap_memcache_get 70
ldap_memcache_init 70
ldap_memcache_set 70
ldap_memcache_update 70
ldap_memfree 73
ldap_modify 9, 10, 11, 76
ldap_modify_ext 76
ldap_modify_ext_s 76
ldap_modify_s 76
ldap_modrdn 82
ldap_modrdn_s 82
ldap_mods_free 76

ldap_msgfree 85
ldap_msgid 85
ldap_msgtype 85
ldap_next_attribute 48
ldap_next_entry 50
ldap_next_message 74
ldap_next_reference 50
ldap_parse_extended_result 79
ldap_parse_reference_np 50
ldap_parse_result 79
ldap_parse_sasl_bind_result 79
ldap_perror 42
ldap_rename 82
ldap_rename_s 82
ldap_result 5, 14, 85
ldap_result2error 14, 42
ldap_sasl_bind 32
ldap_sasl_bind_s 32
ldap_search 5, 9, 87
ldap_search_ext 87
ldap_search_ext_s 87
ldap_search_s 12, 13, 87
ldap_search_st 87
ldap_server_conf_save 92
ldap_server_free_list 92
ldap_server_locate 92
ldap_set_option 15, 57
ldap_set_option_np 57
ldap_set_rebind_proc 32
ldap_simple_bind 32
ldap_simple_bind_s 32
ldap_ssl_client_init 107
ldap_ssl_init 107
ldap_ssl_start 107
ldap_unbind 10, 57
ldap_unbind_s 10, 57
ldap_url_parse 112
ldap_url_search 112
ldap_url_search_s 112
ldap_url_search_st 112
ldap_value_free 54
ldap_value_free_len 54
ldap.h header file 142
ldapadd utility

description 121
running 115

ldapdelete utility
description 118
running 115

ldapdelete.c 161
ldapmodify utility

description 121
running 115

ldapmodrdn utility
description 131
running 115

ldapsearch utility
description 135
running 115

ldapsearch.c 169
ldapssl.h header file 154

196 z/OS V1R4.0 Security Server LDAP Client Programming

LDIF mode 123
levels, debug 15
licensed publications x
linking program 7
listing all subentries 13
LookAt messages x
LPALIB 3

M
Makefile

example 8, 159
managing eNetwork domain 41
mask

specifying for debug 15
mechanism,bind 33
message

stepping through list 74
messages

using LookAt x
model data

LDAP 2
modes

input 123
LDIF 123
modify 126

modify mode 126
modifying

entries 121
LDAP entries 11
RDN of entries 131
schema 129

multiple operations 17

N
name

typed 2
nonportable API 57

O
object class 2
obtaining

LDAP DNs 53
LDAP message ID 85
LDAP message type 85

opening LDAP connection 57
operation utilities, LDAP 115
operations, extended 46
option, setting value of LDAP 57
organization of document ix

P
parsing

information from results 79
LDAP DNs 53
LDAP URL 112

primitive LDAP operations 3, 5

printing LDAP error 42
processing

errors 14
results 5
URLs 5

programming interface
LDAP 1

programming interface information 186
protocol

LDAP 1, 65
pseudo-SRV records 104
publications

related 187
published LDAP server information

finding 92
saving 92

R
RACF (Resource Access Control Facility) 27
RACF key ring 110
RDN (relative distinguished name)

changing 12
examples of LDAP RDNs 3
modifying 82, 131
using with LDAP 3

reading attribute values 13
reading entry contents 12
rebinding 32, 35
records

pseudo-SRV 104
SRV 101
TXT 101

referrals 32, 35
relative distinguished name (RDN)

See RDN 3
removing cached search results 70
removing LDAP entries 39
RESOLVER_CONFIG

environmental variable 5
Resource Access Control Facility (RACF) 27
Resource Link x
results

extracting information from 79
getting with LDAP 13
processing 5

retriev 54
retrieving

array of server controls 48
error codes 42
first LDAP entry 48
LDAP attribute values 54
LDAP entry count 48
next attribute count type name 48
next LDAP entry 50
option 57

returning error codes 42
returning LDAP result 85
root DSE 140
routines

control 24

Index 197

routines (continued)
ldap_abandon 28
ldap_abandon_ext 28
ldap_add 30
ldap_add_ext 30
ldap_add_ext_s 30
ldap_add_s 30
ldap_bind 32
ldap_bind_s 32
ldap_compare 37
ldap_compare_ext 37
ldap_compare_ext_s 37
ldap_compare_s 37
ldap_control_free 73
ldap_controls_free 73
ldap_count_attributes 48
ldap_count_entries 50
ldap_count_messages 74
ldap_count_references 50
ldap_count_values 54
ldap_count_values_len 54
ldap_delete 39
ldap_delete_ext 39
ldap_delete_ext_s 39
ldap_delete_s 39
ldap_enetwork_domain_get 41
ldap_enetwork_domain_set 41
ldap_err2string 42
ldap_explode_dn 53
ldap_extended_operation 46
ldap_extended_operation_s 46
ldap_first_attribute 48
ldap_first_entry 50
ldap_first_message 74
ldap_first_reference 50
ldap_free_urldesc 112
ldap_get_dn 53
ldap_get_entry_controls_np 50
ldap_get_errno 42
ldap_get_option 57
ldap_get_values 54
ldap_get_values_len 54
ldap_init 57
ldap_is_ldap_url 112
ldap_memcache_destrooy 70
ldap_memcache_flush 70
ldap_memcache_get 70
ldap_memcache_init 70
ldap_memcache_set 70
ldap_memcache_update 70
ldap_memfree 73
ldap_modify 76
ldap_modify_ext 76
ldap_modify_ext_s 76
ldap_modify_s 76
ldap_modrdn 82
ldap_modrdn_s 82
ldap_mods_free 76
ldap_msgfree 85
ldap_msgid 85
ldap_msgtype 85

routines (continued)
ldap_next_attribute 48
ldap_next_entry 50
ldap_next_message 74
ldap_next_reference 50
ldap_open 57
ldap_parse_extended_result 79
ldap_parse_reference_np 50
ldap_parse_result 79
ldap_parse_sasl_bind_result 79
ldap_perror 42
ldap_rename 82
ldap_rename_s 82
ldap_result 85
ldap_result2error 42
ldap_sasl_bind 32
ldap_sasl_bind_s 32
ldap_search 87
ldap_search_ext_s 87
ldap_search_s 87
ldap_search_st 87
ldap_server_conf_save 92
ldap_server_free_list 92
ldap_server_locate 92
ldap_set_option 57
ldap_set_option_np 57
ldap_set_rebind_proc 32
ldap_simple_bind 32
ldap_simple_bind_s 32
ldap_ssl_client_init 107
ldap_ssl_init 107
ldap_ssl_start 107
ldap_unbind 57
ldap_unbind_s 57
ldap_url_parse 112
ldap_url_search 112
ldap_url_search_s 112
ldap_url_search_st 112
ldap_value_free 54
ldap_value_free_len 54
synchronous 4

routines, C utility 3
running operation utilities 115
running program 7

S
sample Makefile 159
sample programs

delete entries 161
searching entries 169
using LDAP API 161

sample socks.conf configuration file 6
SASL authentication 34
SASL GSS API bind 1
saving LDAP server information 92
schema

modifying 129
search

caching results 70
control 25

198 z/OS V1R4.0 Security Server LDAP Client Programming

search (continued)
using LDAP 5

search response 85
search results, caching 17
search results, counting 50
searching entries 87
searching entries with timeout 87
searching for root DSE 140
searching for URL 112
searching for URL with timeout 112
Secure Sockets Layer (SSL)

See SSL 107
security

supported by LDAP 1
server authentication 108
server controls 24, 66
server, LDAP

binding 32
unbinding 32

service provider interface (SPI), LDAP 17
session controls 24
session settings 60
setting

option 57
shell, z/OS 115

running programs in 3
shortcut keys 183
SIGPIPE signal 109
SIGPIPE signals 9
simple authentication 1, 34
SOCKS server 5
SOCKS_CONF

environmental variable 5
SOCKS_SERVER

environmental variable 5
socksified client

using 5
SPI (service provider interface), LDAP 17
SRV records 101
SSL (Secure Sockets Layer)

ciphers 64
creating connection 107
inactivity timer 65
initializing 107

standard error stream 14, 42
starting SSL 107
stepping through attributes 48
storage

deallocating 73
freeing 6

structure
LDAP program 9

subentries, listing 13
Sun JNDI service provider 18
supported ciphers 64
synchronous LDAP operation 17
System SSL 110

T
TCP/IP (Transmission Control Protocol/Internet Protocol)

LDAP use of 19
termination functions 4
terms, glossary of 189
text message 67
textual data 67
thread safety

LDAP API 17
Time Sharing Option (TSO)

See TSO
TLS (Transport Layer Security) 1
trace classes 15
tracing

disabling 6
enabling 6, 15

Transmission Control Protocol/Internet Protocol
(TCP/IP)

See TCP/IP
Transport Layer Security (TLS) 1
TSO (Time Sharing Option)

running operation utilities from 115
using to run, link, compile 8

TXT records 101
typed

name 2

U
unbinding from LDAP server 32
unbinding LDAP API 10
Universal Resource Locator (URL)

See URL
URL

LDAP 58, 105, 107
URL (Universal Resource Locator)

breaking down LDAP 112
deallocating LDAP 112
processing 5
searching for LDAP 112

utilities, LDAP operation 115
utility functions

LDAP 5
utility routines

C 5

W
waiting for result 85

X
X.500, naming concepts 2
XDS/XOM 3

Z
z/OS data sets 2
z/OS shell

running operation utilities from 115

Index 199

z/OS shell (continued)
running programs 3

200 z/OS V1R4.0 Security Server LDAP Client Programming

Readers’ Comments — We’d Like to Hear from You

z/OS
Security Server
LDAP Client Programming

Publication No. SC24-5924-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC24-5924-02

SC24-5924-02

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SC24-5924-02

	Contents
	Tables
	About this document
	Who should use this document
	How this document is organized
	Conventions used in this document
	Where to find more information
	Softcopy publications
	z/OS online library
	Accessing licensed documents on the Web
	Using LookAt to look up message explanations

	Summary of changes
	Chapter 1. LDAP programming
	How LDAP is defined
	Data model
	LDAP names
	Function overview
	Using the socksified client
	Compiling, linking, and running a program
	Using TSO and batch jobs

	Using the API
	Basic structure

	Performing an operation
	Example: adding an entry
	Example: modifying an entry
	Example: deleting an entire entry
	Example: changing the RDN of an entry and relocating the entry
	Example: comparing an attribute value with its value in an entry in the directory
	Example: reading a directory entry’s contents
	Example: listing all objectClass attribute values for all entries directly below a given entry
	Example: reading all objectClass attribute values for all entries below a given entry

	Getting results
	Error processing
	Using ldap_get_errno and ldap_parse_result
	Example: retrieving the error code of an asynchronous operation request
	Example: retrieving the error code using ldap_parse_result

	Using ldap_err2string and ldap_get_option
	Example: obtaining the character string representing the error code
	Example: sending the result of an operation to the standard error stream

	Tracing
	Thread safety
	Client-side search results caching
	Synchronous versus asynchronous operation
	Calling the LDAP APIs from other languages
	LDAP client for Java

	Chapter 2. LDAP routines
	LDAP controls
	Session controls
	Supported client controls
	Using RACF® data
	ldap_abandon
	ldap_add
	ldap_bind
	ldap_compare
	ldap_delete
	ldap_enetwork_domain
	ldap_error
	ldap_extended_operation
	ldap_first_attribute
	ldap_first_entry/reference
	ldap_get_dn
	ldap_get_values
	ldap_init
	ldap_memcache
	ldap_memfree
	ldap_message
	ldap_modify
	ldap_parse_result
	ldap_rename
	ldap_result
	ldap_search
	ldap_server
	ldap_ssl
	ldap_url

	Chapter 3. LDAP operation utilities
	Running the LDAP operation utilities in the z/OS shell
	Running the LDAP operation utilities in TSO
	Using the command line utilities
	SSL/TLS information for LDAP utilities
	Using RACF key rings
	CRAM-MD5 authentication to an IBM Directory Server

	ldapdelete utility
	ldapmodify and ldapadd utilities
	ldapmodrdn utility
	ldapsearch utility

	Appendix A. LDAP header files
	lber.h
	ldap.h
	ldapssl.h

	Appendix B. Sample Makefile
	Appendix C. Example programs
	The ldapdelete.c example program
	The ldapsearch.c example program

	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming interface information
	Trademarks

	Bibliography
	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

